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Abstract

A key component to the success of deep learning is the use of gradient-based optimization. Deep
learning practitioners compose a variety of modules together to build a complex computational pipeline
that may depend on millions or billions of parameters. Differentiating such functions is enabled through
a computational technique known as automatic differentiation. The success of deep learning has led to an
abstraction known as differentiable programming, which is being promoted to a first-class citizen in
many programming languages and data analysis frameworks. This often involves replacing some common
non-differentiable operations (eg. binning, sorting) with relaxed, differentiable analogues. The result is
a system that can be optimized from end-to-end using efficient gradient-based optimization algorithms.
A differentiable analysis could be optimized in this way — basic cuts to final fits all taking into account
full systematic errors and automatically analyzed. This Snowmass LOI outlines the potential advantages
and challenges of adopting a differentiable programming paradigm in high-energy physics.

1 Introduction

The need for gradients of numerical functions is ubiquitous in particle physics. Gradients are used in the
classic formulas for propagation of uncertainty, where, in many cases, the needed derivatives are found
symbolically and then coded by hand. For example, gradients are used in propagating uncertainties in the
parameters of tracks to the parameters of vertices or propagating the uncertainty in energy calibration to
an invariant mass. A further example of the use of gradients in particle physics can be seen in MINUIT [1]
— a tool used to minimize (or maximize) an objective, such as a maximum-likelihood fit. MINUIT uses
the method of finite differences to estimate the gradient, following it to minimize or to maximize the
objective. Finite differences are poorly behaved numerically, and do not scale well to many parameters.

Particle physicists are also often interested in optimizing more complicated algorithms, such as those
found in reconstruction, event selection, or down-stream analysis tasks. These algorithms also have
several parameters (eg. calibration constants or cut values) that can be adjusted to optimize the objective
at hand (eg. mass resolution or the expected significance for a search). These types of algorithms often
involve if-then-else control flow, loops, sorting, binning, cuts, and other tasks that are inherently non-
differentiable. Furthermore, our software infrastructure is not well suited to estimate derivatives of such
analysis pipelines through finite differences (eg. through sequentially running Athena [2] or CMSSW [3]
multiple times with different parameters). As a result, we often approach optimization of such pipelines
through heuristics and various parameter scanning approaches with various levels of sophistication.

The field of deep learning primarily uses gradient-based optimization, which requires the computation
to be differentiable [4]. Instead of using symbolic differentiation or finite difference methods, deep learning
frameworks rely on a computational technique known as automatic differentiation [5], or ‘autodiff’
for short, which provides derivatives of numerical functions with machine precision. This has allowed
deep learning practitioners to compose various differentiable components into enormously complicated
differentiable functions with millions, or even billions, of parameters. Moreover, these systems can be
jointly optimized in an end-to-end fashion with respect to a single objective — something not possible
with a set of mixed strategies as typically used in particle physics.

The success of deep learning has led to an abstraction known as differentiable programming [6,
7], which is being treated as a first-class citizen in many programming languages and data analysis
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frameworks. Making a program differentiable often involves replacing some common non-differentiable
operations (eg. binning, sorting) with relaxed, differentiable analogues. As noted in Ref. [8], with
this view, incorporating automatic differentiation into existing codes is a more direct way to exploit the
advances in deep learning than trying to incorporate domain knowledge into an entirely foreign substrate
such as a deep neural network. Importantly, the resulting system can still be optimized end-to-end using
efficient gradient-based optimization algorithms.

2 Initial Steps

An informal community of people has formed around this idea in the form of the gradhep organization.
The group is investigating not only the technical side, but also thinking about use-cases and alternative
differentiable relaxations of common non-differentiable algorithmic components. More information on
gradhep can be found at the HEP Software Foundation activity page.

Differentiable Programming in Analysis Code:
The goal of a differentiable analysis is to unify the analysis pipeline by simultaneously optimizing

the free parameters of an analysis with respect to the desired physics objective. By using automatic
differentiation in combination with the relaxation of non-differentiable operations, an analysis workflow
can be made fully differentiable and end-to-end optimizable.

A recent illustration of differentiable programming in the context of high-energy physics analysis can
be seen in INFERNO [9] and neos [10], which are example implementations of end-to-end optimized analysis
pipelines that use the analysis sensitivity including systematic uncertainties as the objective function.
These approaches introduced relaxations of the non-differentiable histogramming operation, and neos

also made use of an advanced form of automatic differentiation needed as the optimization objective
itself has a nested optimization associated to evaluating the profile likelihood ratio.

While neos is a good first step, a long-term goal of this effort is to optimize real physics analyses by
incorporating automatic differentiation capabilities into the software. The NSF-funded software institute
IRIS-HEP has incorporated differentiable programming into its Analysis Grand Challenge, which is
involved in the planning of tools such as awkward-array [11] and pyhf [12]. DIANA/HEP and other NSF-
related projects have invested in enabling automatic differentiation in ROOT via the clad library [13].
In the longer term, one would like to have differentiable programming incorporated into the bulk event
processing frameworks. The use of C++ autodiff libraries has been demonstrated in the context of
Athena. In addition to autodiff libraries for C++ (eg. ADOL-C), various white papers have emerged
discussing autodiff as a first class citizen in some languages like C++ [14], Julia [15], Swift [16], and
F# [17].

Differentiable Programming in Simulation Code:
Even with a fixed analysis pipeline, there are cases in which one would like to compute gradients for

simulated samples with respect to the parameters of the simulation. Therefore, differentiable program-
ming is also something that is useful to incorporate into the simulators. These gradients are useful for
simulation-based inference (aka likelihood-free inference) as they can reduce the number of simulated
events needed by orders of magnitude [18, 8], and are also closely connected to the definition of Opti-
mal Observables, sufficient statistics, and what statisticians refer to as the ‘score’ function. The use of
gradients to improve measurements has been explored for effective field theories [19, 20], cosmology [21],
and dark matter substructure [22]. These works do this either by exploiting special cases that made
the gradients easy to compute, or by writing custom simulators with automatic differentiation baked in.
Recently, there has also been progress in evaluating MadGraph matrix elements with autodiff-enabled,
Python-based machine learning backends [23].

3 Conclusions

While the potential of differentiable programming for particle physics is compelling, achieving this goal
is ambitious. Incorporating automatic differentiation may be easier for some parts of HEP software
than others. In addition, it is not clear that gradient-based optimization will always be superior to
other black-box optimization algorithms that do not require gradients (eg. those used in hyperparameter
optimization or the heuristic approaches traditionally used by physicists). The intention of this working
group is to continue to investigate these issues, and provide input to the Snowmass process through
ad-hoc contributions, with results and the state of the field summarized in a white-paper.
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