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Abstract

Atmospheric retrieval determines the properties of an atmosphere based on its measured spectrum. The low signal-to-
noise ratios of exoplanet observations require a Bayesian approach to determine posterior probability distributions of
each model parameter, given observed spectra. This inference is computationally expensive, as it requires many
executions of a costly radiative transfer (RT) simulation for each set of sampled model parameters. Machine learning
(ML) has recently been shown to provide a significant reduction in runtime for retrievals, mainly by training inverse
ML models that predict parameter distributions, given observed spectra, albeit with reduced posterior accuracy. Here
we present a novel approach to retrieval by training a forward ML surrogate model that predicts spectra given model
parameters, providing a fast approximate RT simulation that can be used in a conventional Bayesian retrieval
framework without significant loss of accuracy. We demonstrate our method on the emission spectrum of HD 189733
b and find good agreement with a traditional retrieval from the Bayesian Atmospheric Radiative Transfer (BART)
code (Bhattacharyya coefficients of 0.9843–0.9972, with a mean of 0.9925, between 1D marginalized posteriors).
This accuracy comes while still offering significant speed enhancements over traditional RT, albeit not as much as
ML methods with lower posterior accuracy. Our method is∼9× faster per parallel chain than BART when run on an
AMD EPYC 7402P central processing unit (CPU). Neural-network computation using an NVIDIA Titan Xp graphics
processing unit is 90×–180× faster per chain than BART on that CPU.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Bayesian statistics (1900); Posterior
distribution (1926); Convolutional neural networks (1938); Neural networks (1933)

1. Introduction

Over the past decades, exoplanet studies have expanded from
their detection to include characterization of their atmospheres via
retrieval (see reviews by Seager & Deming 2010; Deming &
Seager 2017). Retrieval is the inverse modeling technique whereby
forward models of a planet’s spectrum are compared to
observational data in order to constrain the model parameters
(see review by Madhusudhan 2018). These typically include the
shape of the thermal profile, abundances of species, and condensate
properties. While some solar system objects can be characterized
with simpler approaches (such as Levenberg–Marquardt minimiza-
tion) due to their high signal-to-noise ratios (e.g., Koskinen et al.
2016), retrieval on noisy exoplanet spectra require Bayesian
methods to provide a distribution of models that can explain the
observed data. The posterior distribution resulting from a Bayesian
retrieval places limits on each model parameter (within some range,
an upper or lower limit, or equally probable for all values
considered), informing the statistical significance of the result.

Bayesian retrieval methods involve evaluating thousands to
millions of spectra, integrating over the observational

bandpasses, and comparing to observations. Depending on
model complexity, this requires hundreds to thousands of
parallelizable compute hours, resulting in hours to days of
runtime. Calculating the model spectra by solving the radiative
transfer (RT) equation takes the vast majority of compute time.
Machine learning (ML) encompasses algorithms that learn

representations of and uncover relationships within a collection
of data samples. Deep learning (Goodfellow et al. 2016) is a
subfield of ML that is based on neural networks, which are
highly flexible differentiable functions that can be fit to data.
Neural networks can classify images (e.g., Krizhevsky et al.
2012; Simonyan & Zisserman 2015; Szegedy et al. 2015; He
et al. 2016; Huang et al. 2017), recognize speech (e.g.,
Chorowski et al. 2014; Amodei et al. 2016; Chan et al. 2016;
Xiong et al. 2016), and translate between languages (e.g., Cho
et al. 2014; Bahdanau et al. 2015; Ranzato et al. 2016; Sennrich
et al. 2016; Wu et al. 2016). Neural networks consist of a
hierarchy of layers that contain nodes performing weighted
(non)linear transformations of their inputs, through a series of
hidden layers, to the desired output. For example, for a
retrieval, one might have the input layer receive the observed
spectrum, hidden layers extract features, and the output layer
predict the underlying atmospheric parameters. Neural-network
training conventionally uses gradient-based optimization,
iteratively adjusting the weights of the connections between
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nodes to minimize the error between the neural network’s
prediction and the desired output (Rumelhart et al. 1986).

Recent applications of ML to atmospheric retrieval reduced
compute time from hundreds of hours to minutes or less.
Márquez-Neila et al. (2018) presented a random forest of
regression trees to build predictive distributions comparable to
the posterior distributions of traditional Bayesian retrievals.
Zingales & Waldmann (2018) utilized a generative adversarial
network (GAN; Goodfellow et al. 2014) to retrieve distribu-
tions for model parameters. Waldmann & Griffith (2019) used
a convolutional neural network (CNN) to map spatial and
spectral features across Saturn. In Cobb et al. (2019), we
introduced plan-net, an ensemble of Bayesian neural
networks that uses parameter correlations to inform the
uncertainty on retrieved parameters. Hayes et al. (2020)
demonstrated a new approach to ML retrieval by applying k-
means clustering to a principal component analysis of the
observed spectrum to inform a standard Bayesian retrieval.
Johnsen & Marley (2020) showed that a dense neural network
can provide quick estimations of atmospheric properties.

While these approaches are promising, all except Hayes et al.
(2019) suffer from a common deficiency: the reduction in
computational time is accompanied by a reduction in posterior
accuracy because they make significant approximations when
performing Bayesian inference. For ML to become an integral
part of atmospheric retrieval, the accuracy of the posterior
approximation must be preserved.

The solution lies in simulation-based inference methods
(Cranmer et al. 2019). While directly using a simulator (e.g.,
RT code) requires a consistent amount of compute time for
each new inference (e.g., retrieval), surrogate models that
emulate the simulator (e.g., neural networks) allow new data to
be quickly evaluated after an upfront computational cost to
train the surrogate (Munk et al. 2019; Kasim et al. 2022). ML-
and simulation-based inference approaches have been success-
fully applied to a variety of tasks ranging from quantum
chemistry (Gilmer et al. 2017) to particle physics (Brehmer
et al. 2018; Baydin et al. 2019), resulting in significant
reductions in compute cost with minimal loss in accuracy.

Similar approaches have been used by the Earth science
community to reduce the computational burden of forward
modeling of spectra, retrieval of surface conditions, and
atmospheric correction (e.g., Atzberger 2004; Garcia-Cuesta
et al. 2009; Rivera et al. 2015; Verrelst et al. 2015; Gómez-
Dans et al. 2016; Verrelst et al. 2016, 2017; Chernetskiy et al.
2018; Yin et al. 2018; Vicent et al. 2018; Bue et al. 2019).

Here we present a novel application of this approach to
retrieval, which uses a neural-network model of RT within a
Bayesian framework, apply it to the emission spectrum of HD
189733 b, and compare the results to a classical retrieval using
the RT code that trained the surrogate model. Our general
method is to (1) generate a data set over some parameter space,
(2) train a surrogate forward model on the generated data, and
(3) infer the inverse process via a Bayesian sampler (Figure 1).
Our approach circumvents the existing limitations of ML
retrieval methods, which seek to directly learn the inverse
process, by learning the forward, deterministic process (RT)
and using the simulator surrogate in a standard inference
pipeline. This approach preserves the accuracy of the Bayesian
inference and, while slower than direct ML retrieval, is still
much faster than computing RT.

In Section 2, we describe our approach in detail as well as
introduce the software packages that implement the method.
Section 3 discusses the results. Finally, Section 4 presents
conclusions.

2. Methods

2.1. Model Training

To train a neural network for our approach (Figure 1), we
generate a data set of spectra using the Bayesian Atmospheric
Radiative Transfer (BART) code (Blecic et al. 2022; Cubillos
et al. 2022; Harrington et al. 2022).
The atmospheric models consist of 100 log-uniform layers

spanning pressures from 10−8 to 100 bar, and we assume that the
planet radius corresponds to a pressure of 0.1 bar. We use the five-
parameter temperature–pressure profile, T(p), the parameterization
of Line et al. (2013); κ, the Planck mean infrared opacity; γ1 and
γ2, the ratios of the Planck mean visible and infrared opacities for
each of two streams; α, which controls the contribution of the two
streams; and β, which represents albedo, emissivity, and energy
recirculation. We allow the radius (Rp), mass (Mp), and semimajor
axis (a, adjusts the temperature at the top of the atmosphere due to
stellar irradiation) of the planet to vary to encompass a range of
hot Jupiters. We also include a free parameter for each of the
uniform vertical abundance profiles of H2O, CO2, CO, and CH4.
We allow a wide range of values without regard for physical

plausibility, except by enforcing that (1) the H2/He ratio remains
constant, (2) the total relative abundances of molecules in the
atmosphere equals 1, and (3) the T(p) profile does not exceed the
temperature range of the line lists. For example, this could lead
to models with H2O at conditions where it dissociates (Arcangeli
et al. 2018), though in the case of HD 189733 b, such models
would be rejected with a high probability due to a poor fit. We
note that these are not fundamental constraints of our approach;
other constraints (e.g., enforcing thermochemical equilibrium,
keeping elemental ratios within some range) may be used when
generating the data set to train the surrogate model.
For opacities, we use HITEMP for H2O, CO, and CO2

(Goorvitch 1994; Tashkun et al. 2003; Barber et al. 2006;

Figure 1. Schematic diagram of our inverse modeling method, color-coded
based on the scope of our software packages. MARGE (Section 2.3.1)
generates a data set based on a deterministic, forward process (e.g., RT) and
trains a surrogate model to approximate that process. Using the trained
surrogate, HOMER (Section 2.3.2) infers the inverse process (e.g., atmospheric
retrieval) by simulating many forward models and comparing them to the target
data (e.g., an observed spectrum) in a Bayesian framework.
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Rothman et al. 2010), HITRAN for CH4 (Niederer et al. 2008;
Boudon et al. 2010; Nikitin et al. 2010, 2011; Brown et al. 2013;
Campargue et al. 2013; Daumont et al. 2013; Niederer et al.
2013; Nikitin et al. 2013; Rothman et al. 2013), and collision-
induced absorptions of H2–H2 and H2–He (Borysow et al. 2001;
Borysow 2002; Abel et al. 2012; Richard et al. 2012). While
there are newer line lists available with a greater number of lines
(e.g., Hargreaves et al. 2020), these tests are meant to
demonstrate consistency between neural-network-based and
non-ML retrievals; we therefore use the setup described in
Harrington et al. (2022), which uses this set of line lists to
compare with previous studies. As our approach learns RT from
a data set of spectra, it is not tied to any specific line lists.

To train our neural-network surrogate model, we generate
3,458,432 spectra, which are subdivided into 2,446,784 spectra
(∼70%) for training, 689,536 spectra (∼20%) for validation, and
322,112 spectra (∼10%) for testing (for considerations about
data set size, see Appendix B). Model parameters come from the
uniform distribution bound by the limits listed in Table 1. Each
spectrum spans 280–7100 cm−1 at a resolution of 1.0 cm−1 and
corresponds to the planet’s emitted flux in erg s−1 cm−1.

When processing the BART inputs/outputs for our neural
network, we simplify the neural-network inputs by transform-
ing the planet mass into the surface gravity, because this is a
factor in the integration to calculate the spectrum. We assume a
host star of radius 0.756 Re with a temperature of 5000 K to
calculate the T(p) profiles; because β acts as a scaling factor on
the related term (Equation (15) of Line et al. 2013), it can
compensate for different stellar fluxes.

We normalize the input and output data by (1) taking the
logarithm of the output spectra, (2) standardizing the inputs and
(log) outputs by subtracting the training mean and dividing by
the training standard deviation, and (3) scaling the standardized
inputs and outputs to be in the range [−1, 1]. The neural
network’s input layer corresponds to the 12 inputs described
above, with surface gravity replacing planetary mass. The
hidden layers consist of Conv1d(256)L(0.05)—Dense(4096)L
(0.05)—Dense(4096)L(0.05)—Dense(4096)L(0.05)—Dense
(4096)L(0.05). Conv1d (n) indicates a 1D convolutional layer
with n feature maps and a kernel size of 3. L(m) indicates
a leaky rectified linear unit (ReLU) activation function with
slope m for x< 0. The dense output layer has 6821 nodes,
corresponding to the emitted spectrum over the defined
wavenumber grid, with a ReLU activation function. For details
on our model selection process, see Appendix A.

We train with a batch size of 64 using a mean-squared error
loss function, the Adam optimizer, and early stopping with a
patience of 30 epochs based on the validation loss. We employ a
cyclical learning rate that increases from 8× 10−6 to 5× 10−3

over four epochs, then decreases over the same window. After
each complete cycle (eight epochs), the maximum learning rate
decays by half the difference between the maximum and
minimum learning rates (triangular2 policy; Smith 2015). The
boundaries were chosen according to the method described in
Smith (2015), except that we consider the loss instead of
accuracy (see Appendix A for details). To evaluate the model’s
performance, we compute the root-mean-squared error (RMSE;
comparable to the standard deviation of the differences between
the predicted and true values) and the coefficient of determina-
tion (R2, measures the linear correlation between the predicted
and true values) between the data and the predictions, both for
the full high-resolution output and the band-integrated spectra
corresponding to the observations of HD 189733 b.

2.2. Retrieval

Following the setup of Harrington et al. (2022), we perform
a retrieval of the dayside atmosphere of HD 189733 b based on
the measurements by the Hubble Space Telescope Near
Infrared Camera MultiObject Spectrograph (Swain et al.
2009); Spitzer Space Telescope Infrared Spectrograph (IRS;
Grillmair et al. 2008); Spitzer InfraRed Array Camera (IRAC)
channels 1 and 2 values of 0.1533± 0.0029% and
0.1886±0.0071% (M. Line 2021, private communication);
IRAC channel 3, IRS 16 μm photometry, and Multiband
Imaging Photometer for Spitzer (Charbonneau et al. 2008); and
IRAC channel 4 (Agol et al. 2010). We use a K2 solar-
abundance Kurucz stellar model for the host star’s emission
(Castelli & Kurucz 2003). Using the differential evolution
Markov chain with snooker updating algorithm of ter Braak &
Vrugt (2008), 2,500,000 iterations are spread across 10 parallel
chains, with a burn in of 50,000 iterations per chain. When
retrieving, we fix the semimajor axis to 0.031 au and the
planetary radius and gravity at 0.1 bar to 1.138 RJ and
2187.762 cm s−2, respectively. The remaining neural-network
input parameters are allowed to freely vary over the entire
training space.
We compute the Bhattacharyya coefficient (Bhattachar-

yya 1943; Aherne et al. 1998) to compare the similarity of
the 1D marginalized posteriors, where a value of 0 indicates no
overlap and a value of 1 indicates identical distributions. We
choose this metric over others, such as the Kullback–Leibler
divergence, because it is both intuitive to understand and
defined for all distributions, even those that do not overlap.
For this investigation, we focus on a neural network as a

faster replacement for an RT code for retrieval; we therefore
only compare the results of BART and the neural-network
approximation. For a discussion of these results in the context
of previous retrievals of HD 189733 b’s dayside atmosphere,
see Harrington et al. (2022).

2.3. Software

We have developed two Python packages for this invest-
igation. Both are open-source software, with full documenta-
tion, under the Reproducible Research Software License.8 We

Table 1
Forward Model Parameter Space

Parameter Minimum Maximum

log k −5.0 1.0
log 1g −2.0 2.0

log 2g −1.3 1.3

α 0.0 1.0
β 0.7 1.3
Rp (RJ) 0.8 1.5
Mp (MJ) 0.8 1.5
a (AU) 0.2 0.4
log H O2 −13 −0.5
log CO2 −13 −0.5
log CO −13 −0.5
log CH4 −13 −0.5

8 https://planets.ucf.edu/resources/reproducible-research/software-license/
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encourage users to contribute to the code via pull requests on
Github.

2.3.1. MARGE

The Machine learning Algorithm for Radiative transfer of
Generated Exoplanets9 (MARGE, Figure 1) (1) generates a
data set based on a user-supplied function, (2) processes the
generated data using a user-supplied function, and (3) trains,
validates, and tests a user-specified neural-network architecture
on a data set. The software package allows independent
execution of any of the three modes, enabling a wide range of
applications beyond exoplanet retrieval.

MARGE’s design allows it to be applied to any deterministic
model. For 1D data (such as spectra), MARGE’s desired format
is NumPy binary (.npy) files of 2D arrays, where each row
corresponds to a single case. Each row is a data vector of the
input parameters followed by the output data (e.g., spectrum).
MARGE currently includes data-generation and -processing
functions for BART as well as a data-processing function for
the pypsg10 Python interface (Soboczenski et al. 2018) for the
NASA Planetary Spectrum Generator (Villanueva et al. 2018).
We encourage users to contribute code via pull request to

handle the processing of the inputs/outputs of other software
packages.
We implement neural-network model training in Keras

(version 2.2.4, Chollet et al. 2015), using a Tensorflow (version
1.13.1, Abadi et al. 2016) backend. MARGE enables early
stopping by default to prevent overfitting, and the user can halt
or resume training. MARGE allows for cyclical learning rates
for more efficient training (Smith 2015; see also Appendix A).
Users specify the model architecture details and the data
location, and the software handles the data normalization,
training, validation, and testing. MARGE preprocesses the data
into Tensorflow’s TFRecords format for efficient handling.
Users have multiple options when preprocessing the data,
which include taking the logarithm of the inputs and/or
outputs, standardizing the data according to its mean and
standard deviation, and/or scaling the data to be within a
specified range. The mean and standard deviation of the data
set are computed using Welford’s method (Welford 1962) to
avoid the need to load the entire data set into memory at once.
MARGE computes the RMSE and R2 for predictions on the
validation and test sets to evaluate model performance; these
metrics can optionally be calculated over integrated filter
bandpasses. Finally, users may specify cases from the test set to
plot the predicted and true spectra, with residuals (e.g.,
Figure 2).

Figure 2. Four comparisons of planetary emission spectra predicted by MARGE and calculated by BART. The smoothed curves use a Savitzky–Golay filter with a
third-order polynomial across a window of 101 elements (100 cm−1). The purple color arises due to a detailed match between the red and blue spectra at high
resolution. For the residuals, a black line is plotted at 0 to show regions where the neural network consistently over- or underpredicts the spectrum. A histogram of the
high-resolution residuals appears to the right of the residual scatter plot, where the x-axis shows the probability density function (PDF) for the range of residual
percentages. Top left: case with T(p) profile that increases in temperature with altitude, with H2O and CO2 emission lines. Top right: case with T(p) profile that
decreases in temperature with altitude, with absorption primarily due to CH4 and H2O. Bottom left: cases with T(p) profile that has an inversion around 0.1 bar, with
CH4, CO, and CO2 absorption and emission features. Bottom right: case with T(p) profile that is nearly isothermal at the pressures with sensitivity.

9 MARGE is available at https://github.com/exosports/marge.
10 https://gitlab.com/frontierdevelopmentlab/astrobiology/pypsg
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2.3.2. HOMER

The Helper Of My Eternal Retrievals11 (HOMER) utilizes a
MARGE-trained model to infer the underlying inputs corresp-
onding to some observed outputs (Figure 1). For its Bayesian
framework, HOMER uses a Python wrapper for Markov Chain
and nested-sampling algorithms. The user specifies data,
uncertainties, observational filters, a parameter space, and a
few related inputs, which are passed to the Bayesian sampler to
perform the inference. If available, a graphics processing unit
(GPU) calculates neural-network predictions, though the
central processing unit (CPU) can do this at the cost of
increased runtime. For each iteration of the Bayesian inference,
the trained neural network predicts on the proposed input
parameters, which are modified as necessary (descale,
denormalize, divide by the stellar spectrum, unit conversions,
and/or integrated over bandpasses).

HOMER produces plots of the best-fit spectrum, 1D
marginalized posteriors, 2D pairwise posteriors, and parameter
history traces. The best-fit spectrum plot contains the data (with
observational bandpasses indicated by uncertainties in x) and, if
the Datasketches12 library is installed, the 1σ, 2σ, and 3σ
spectra. We use the streaming quantiles method of Karnin et al.
(2016) as implemented in DataSketches to compute the 1σ–2σ–
3σ spectra. This approach avoids needing to load all of the
evaluated models at once, which could exceed system memory.

HOMER calculates the steps per effective independent
sample (SPEIS) and effective sample size (ESS) as described in
Harrington et al. (2022). Markov chains make small, correlated
steps; while a chain may perform 100,000 iterations, if it takes
5000 steps to materialize a completely independent sample
(steps per effective independent sample, SPEIS), then there
have only been 20 effective samples. SPEIS is calculated from
the autocorrelation function of each parameter for each chain;
as a conservative estimate, we use the highest SPEIS value
when calculating the ESS of the Bayesian inference to ensure
we do not underestimate credible region uncertainties. By
rearranging Equation (1) of Harrington et al. (2022), an
uncertainty sĈ can be calculated on a given credible region Ĉ
based on the ESS:

s
C C1

ESS
1C »

-ˆ ( ˆ ) ( )ˆ

For example, if the ESS is 20, then the determined 68.27%
credible region is actually the 68.27± 10% credible region;
running the inference for more iterations would increase the
ESS and accordingly decrease the uncertainty on that credible
region.

For easy comparison with other retrieval results, HOMER
can overplot the 1D and 2D posteriors for multiple retrievals
(e.g., Figure 3) and compute the Bhattacharyya coefficients
between the 1D posteriors.

3. Results and Discussion

The normalized RMSE, normalized R2, and denormalized R2

metrics for the MARGE-trained model on the test set for the
high-resolution and band-integrated spectra are detailed in
Tables 2 and 3, respectively. The normalized RMSE= 1 and
R2∼ 1 indicate an accurate model for RT over the parameter

space. Rather than waiting for early stopping to engage, we
manually stopped training at 130 epochs because there was an
insignificant improvement in the loss for dozens of epochs. For
considerations on how this affects model performance, see
Appendix B.
Figure 2 shows example comparisons between the spectra

predicted by MARGE and true spectra calculated by BART.
While residuals tend to be around a few percent, they generally
fluctuate around 0; when band-integrated over the observa-
tional filters, these errors usually cancel, as shown by the lower
normalized RMSE and higher denormalized R2 metrics
(Tables 2 and 3). We observe that in some cases, there are
regions where the spectrum is consistently over- or under-
estimated by a few percent (e.g., the top-left panel of Figure 2
around 4250 cm−1), thereby introducing error in the band-
integrated value. However, the small deviations appear to have
only a minor effect on this retrieval’s result; see Section 3.1 for
considerations when retrieving at high spectral resolutions or in
cases where a traditional retrieval result is not available for
comparison.
When applying HOMER to the emission spectrum of HD

189733 b, the results are consistent with BART. The retrieved
T(p) profiles (bottom-left panel Figure 3) agree in the regions
probed by the observations (<1 bar, bottom-right panel
Figure 3) and only begin to deviate deeper in the atmosphere,
where little to no signal is measured according to the
contribution functions. By nature, HOMER cannot calculate
contribution functions, as the MARGE model does not solve
RT. While they could be included for each case in the training
set, this would require significantly more compute resources.
Computing the contribution functions for the single best-fit
case using the RT code that trained MARGE more efficiently
uses compute resources.
Table 4 compares HOMER’s retrieved 68.27% (“1σ”),

95.45% (“2σ”), and 99.73% (“3σ”) credible regions with
BART’s retrieved credible regions. All regions closely agree,
with differences attributable to a combination of uncertainty
from a finite ESS and the neural network’s imperfect nature
(Figure 3, top-right panel). For CO, both BART and HOMER
favor large abundances, though BART finds a greater
probability for log abundances�−2 (Figure 3, top-right
panel). Despite this, the credible regions agree (Table 4).
Similarly, HOMER favors lower values for γ1 and α, though
the resulting thermal profiles agree (Figure 3, bottom-left
panel).
Table 5 compares the SPEIS, ESS values, and associated

uncertainties in the 1σ, 2σ, and 3σ credible regions for
HOMER and BART. HOMER yields an SPEIS that is less than
BART’s, attributable to the conservative estimate of SPEIS as
being the greatest among all chains and parameters. The
highest SPEIS values fluctuate between runs, though the
median SPEIS remains relatively constant. HOMER’s median
SPEIS of 627 and BART’S 615 better reflect the close
agreement between the two retrievals. The Bhattacharyya
coefficients between the 1D marginalized posteriors of
HOMER and BART indicate agreement in the range
0.9843–0.9972, with a mean of 0.9925 (Table 6).

3.1. Limitations

HOMER’s accuracy is, by nature, bound by the accuracy of
the neural-network model. Model inaccuracies may slightly
bias the results, as seen in the minor differences between the

11 HOMER is available at https://github.com/exosports/homer.
12 https://datasketches.apache.org/
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posteriors of HOMER and BART. In our application, this
discrepancy does not significantly affect the scientific conclu-
sions at the spectral resolution of these observations for the
current neural-network accuracy. However, this does not
necessarily hold for all cases. It is possible that at higher

resolutions this neural network’s minor inaccuracies can drive
the Bayesian sampler to radically different results. While in
theory MARGE works for any spectral resolution, users will
need to carefully select the model architecture to ensure that it
can accurately model the spectra over the desired phase space.
In situations lacking a physics-based retrieval to compare with,

Figure 3. Comparisons between HOMER and BART posteriors. Top left: best-fit spectrum of HOMER, with 1σ, 2σ, and 3σ regions. Top right: normalized
probability density functions of the 2D marginalized pairwise posteriors retrieved for HD 189733 b, with the 1D marginalized posteriors along the diagonal. The
purple color arises from the close match between HOMER and BART. Bottom left: posterior median, 1σ from the median, and 2σ from the median T(p) profile. In the
regions with sensitivity, HOMER closely matches BART, with a slightly greater uncertainty. Bottom right: normalized contribution functions, which show the
pressure range each filter probes, for the best-fit BART model.

Table 2
Model Evaluation: High-resolution Spectra

Metric Min. Median Mean Max.

Norm. RMSE 0.00153 0.00224 0.00247 0.01040
Norm. R2 0.99999 1.00000 1.00000 1.00000
Denorm. R2 0.99885 0.99993 0.99990 0.99997

Note. RMSE and R2 are calculated for each of the 6821 outputs corresponding
to the wavenumber grid of 280–7100 cm−1 with a resolution of 1.0 cm−1. For
conciseness, we present statistics about these values. The R2 values are slightly
less than 1, but they round to 1 at the reported precision.

Table 3
Model Evaluation: Band-integrated Spectra

Metric Min. Median Mean Max.

Norm. RMSE 0.00123 0.00147 0.00148 0.00183
Norm. R2 1.00000 1.00000 1.00000 1.00000
Denorm. R2 0.99995 0.99997 0.99997 0.99998

Note. Same as Table 2, except integrated over the 66 bandpasses corresponding
to the referenced observations of HD 189733 b.
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we advise testing to ensure that forward models are reasonably
accurate over the retrieval’s phase space, as some regions may
not be sufficiently sampled for accurate predictions.

3.2. Compute Cost

The performance differences between HOMER and BART
highlight HOMER’s computational benefits. For a single
Markov Chain iteration, BART requires around 1.8 s per
parallel chain on an AMD EPYC 7402P CPU, and multiple
chains parallelize linearly across CPUs. By comparison, a
single iteration with HOMER on the same CPU—which
includes preprocessing (e.g., input normalization), prediction,
postprocessing (e.g., output denormalization, scaling according
to the stellar spectrum), and band integration—requires just
∼0.2 s for any number of chains fewer than 32. For a single
chain, this is thus a∼9× speedup. In our setup, we considered
10 parallel chains, translating to a∼90× speedup for the
function evaluated at each step of the Markov chain. Using an

NVIDIA Titan Xp for predictions, the model evaluations at
each Markov chain step require 0.01–0.02 seconds, a 10×–

20× speedup over predictions with the aforementioned CPU
and, when using 10 parallel chains, a 900×–1800× speedup
over the same function evaluation in BART. We note that if
BART were capable of utilizing a GPU, this speedup factor
would be much less. Further investigation is necessary to
determine whether HOMER offers speed improvements over a
GPU-accelerated RT code. Nevertheless, the CPU results
emphasize the speed improvements of our approach; the
significant reduction in compute time enables retrievals to be
executed on an average laptop. The memory footprints for both
approaches were comparable, though the parameters of each
approach can strongly affect the required memory.
Here, the upfront compute cost to generate a data set and

train a MARGE model is greater than the time to execute a
single BART retrieval. In our example, we generated around
1.5×–2× the number of spectra typically computed during a
BART retrieval with small credible region uncertainties, plus a
few dozen hours to train the neural network. However,
additional retrievals within the trained parameter space execute
in around 30 minutes on our GPU (less when neglecting to
compute spectral quantiles). Thus, when carrying out even two
retrievals within some shared phase space, the compute cost of
MARGE+HOMER is less than two classical retrievals. In
certain circumstances, such as where the radius and mass of the
planet do not need to be varied (e.g., retrievals on different data
sets of the same exoplanet), the number of spectra required to
approximate the phase space accurately would be less than in
our example, which may lead to MARGE+HOMER requiring
less compute time than a single BART retrieval. Beyond the
scope of retrieval, this approach could also provide a benefit to
situations where it is advantageous to trade one set of

Table 4
Retrieved Credible Regions

Parameter Code 68.27% 95.45% 99.73%

log κ HOMER [−1.63, −1.06] [−1.84, −0.71] [−2.07, −0.33]
BART [−1.58, −1.09] [−1.81, −0.79] [−1.99, −0.46]

log γ1 HOMER [−1.98, −1.65] [−1.99, −1.34] [−1.99, −1.06]
BART [−1.98, −1.62] [−2.00, −1.33] [−2.00, −1.07]

log γ2 HOMER [0.34, 0.77] [0.21, 1.10] [0.11, 1.29]
BART [0.35, 0.73] [0.21, 1.02] [−0.07, 1.30]

α HOMER [0.07, 0.39] [0.03, 0.60] [0.01, 0.74]
BART [0.11, 0.42] [0.06, 0.60] [0.02, 0.74]

β HOMER [1.01, 1.07] [0.99, 1.12] [0.96, 1.15]
BART [1.01, 1.06] [0.99, 1.10] [0.97, 1.15]

log H2O HOMER [−3.11, −2.37] [−3.37, −1.82] [−3.70, −1.27]
BART [−3.12, −2.44] [−3.37, −1.92] [−3.63, −1.41]

log CO2 HOMER [−3.39, −2.73] [−3.78, −2.36] [−4.26, −2.01]
BART [−3.33, −2.71] [−3.66, −2.32] [−4.05, −2.03]

log CO HOMER [−6.89, −0.51] [−12.02, −0.51] [−12.90, −0.51]
BART [−6.60, −0.50] [−12.55, −0.50] [−12.90, −0.50]

log CH4 HOMER [−5.16, −3.53] [−10.25, −3.20 [−12.95, −3.12]
BART [−4.71, −3.67] [−10.53, −3.14] [−12.73, −3.07]

Table 5
Credible Region Accuracy

Code SPEIS ESS 1σ Uncertainty 2σ Uncertainty 3σ Uncertainty

HOMER 1668 1199 1.34% 0.60% 0.15%
BART 2084 959 1.50% 0.67% 0.17%

Table 6
Bhattacharyya Coefficients

Parameter Value

κ 0.9948
γ1 0.9972
γ2 0.9950
α 0.9909
β 0.9879
H2O 0.9968
CO2 0.9968
CO 0.9888
CH4 0.9843
Mean 0.9925
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computing resources for another. For example, spaceflight
missions may be limited by thermal, power, and/or onboard
computational resources; it may be advantageous to increase
the total compute time, if it can decrease the power, thermal,
and/or onboard computing required for the calculation.

Another benefit of our approach is that the compute-cost
scaling is less than linear: increasing from 10 to 256 chains
results in just a∼12.5× increase in compute cost per iteration
when using a GPU, compared to 25.6× as much for BART.
Additional chains enable faster exploration of the parameter
space, and, if executed for the same number of iterations per
chain, increases the ESS, which reduces the uncertainty in the
bounds of credible regions (Harrington et al. 2022). Thus, the
combination of MARGE and HOMER saves valuable compute
resources when performing retrievals and reduces total runtime
when performing multiple retrievals.

4. Conclusions

This paper presents a novel technique for ML retrieval that
uses a neural-network model of RT within a Bayesian
framework to reduce the runtime of a retrieval. Our open-
source codes, MARGE and HOMER, provide the community
with an easy-to-use implementation of this approach, and they
are readily applicable to any forward model and its inversion—
not strictly BART or even RT. They are available on Github
with full user documentation.

Our method enables fast retrievals that are consistent with
algorithms that solve the RT equation. The approach
circumvents limitations of current ML retrieval models by
using an RT surrogate in place of the RT code found in
classical retrieval algorithms, thereby preserving the accuracy
of the Bayesian inference. Like BART, MARGE and HOMER
work at both the low resolutions of Spitzer and the high
spectral resolutions of advanced ground-based spectrographs.

On our hardware, HOMER reduces the runtime of each
MCMC iteration by∼9× per parallel chain using a CPU and
90×–180× per chain using a GPU, compared to BART. For
the case of HD 189733 b, the Bhattacharyya coefficients of the
1D marginalized posteriors of BART and HOMER are >0.984,
indicating a close match. This reduction in compute time
enables using more realistic (and computationally expensive)
RT models, such as those including scattering and condensates.
Additionally, 3D retrievals with ∼200 cells could be completed
in a matter of days.

Our approach is particularly well suited to planning studies
for future observations, telescopes, and instruments, like the
James Webb Space Telescope and the Large UltraViolet
Optical InfraRed Surveyor (e.g., Rocchetto et al. 2016; Feng
et al. 2018). Using a single MARGE model trained over the
desired parameter space, HOMER can perform dozens to
hundreds of retrievals in the time it takes to run a single
retrieval with an RT solver.

More generally, our technique and tools can be applied to
problems beyond the scope of this investigation. MARGE
provides a generalized method to train a neural network to
model any deterministic process, while HOMER uses a
MARGE-trained model to infer the inverse process. MARGE
models could be trained for cloud/haze formation or photo-
chemistry within general circulation models, for example.
MARGE and HOMER could also be used to map gravitation-
ally lensed galaxies (e.g., Perreault Levasseur et al. 2017).

With the plethora of ML retrieval algorithms that have
emerged in recent years, standard data sets should be created
and used for benchmarking. Ideally, such a data set would
cover a wide range of wavelengths at high resolution and
include all available opacity sources, scattering, clouds/hazes,
and, in the case of terrestrial planets, surface properties. This
would allow easy comparisons among current and future ML
retrieval codes.
The Reproducible Research Compendium for this work is

available for download.13 It includes all of the code,
configuration files, data, and plots used in support of this work.
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Appendix A
Determining Model Architecture

To select an ideal neural-network architecture, a grid search
must be carried out. This includes varying the types of hidden
layers, number of hidden layers, number of nodes per layer,
activation functions for each hidden layer, parameter(s) for
each activation function, and learning rate.
We carried out a grid search by training each model on a

subset of the total data set (171,456 training, 66,432 validation)
for 20 epochs using a batch size of 64. We considered three to
five dense and convolutional+pooling hidden layers, 64–4096
nodes, rectified linear unit (ReLU), leaky ReLU, exponential
linear unit (ELU), hyperbolic tangent (tanh), and sigmoid
activation functions. The convolutional layers use a kernel size
of 3, and pooling layers use a size of 2. We consider four
learning rate policies: (1) a cyclical rate ranging from
8× 10−6

–5× 10−3 where the maximum is reduced by half
of the difference with the minimum every eight epochs, (2) as
before but ranging from 10−5

–10−3, (3) a constant learning rate
of 10−5, and (4) a constant 10−3. Policies 3 and 4 are only
considered for models that do not include tanh or sigmoid
activations.
Table A1 presents the minimum validation loss for each

architecture considered. There is some randomness to the
minimum validation loss due to the shuffling of the training
data, so models with comparable minimum validation losses
can be considered equivalent in performance. We chose to

13 Available at https://exoplanetarchive.ipac.caltech.edu/docs/marge-homer.html.
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perform a more exhaustive grid search than is typical to
emphasize certain points that can guide future investigations.

In general, we find that models with 4+ hidden layers with
ReLU, leaky ReLU, and ELU activations achieve the lowest
validation loss for this problem. The best-performing models

all have a 1D convolutional layer as the first hidden layer, while
the worst-performing models use tanh or sigmoid activations.
Additional layers generally lead to reductions in the loss. Cases
where this does not occur can be attributed to the learning rate
policy (e.g., models 25–27, LR1 versus LR2), highlighting the

Table A1
Model Grid Search, 20 Epochs

# Hidden Layers Min. Val. Loss (×105)

LR1a LR2b LR3c LR4d

1 D(512)eRf
–D(512)R–D(512)R 17.4 43.8 491 19.2

2 D(1024)R–D(1024)R–D(1024)R 9.61 24.6 291 12.3
3 D(2048)R–D(2048)R–D(2048)R 7.60 13.3 179 8.28
4 D(4096)R–D(4096)R–D(4096)R 8.56 7.17 106 6.54
5 D(512)R–D(512)R–D(512)R–D(512)R 13.0 31.3 382 16.2
6 D(512)Sg–D(512)S–D(512)S–D(512)S 68.0 951 L L
7 D(512)Th

–D(512)T–D(512)T–D(512)T 487 47.0 L L
8 D(512)S–D(1024)S–D(2048)S–D(4096)S 48.5 932 L L
9 D(512)T–D(1024)T–D(2048)T–D(4096)T 1390 68.8 L L
10 D(1024)R–D(1024)R–D(1024)R–D(1024)R 8.43 16.8 238 10.1
11 D(2048)R–D(2048)R–D(2048)R–D(2048)R 7.46 9.13 125 8.01
12 D(4096)R–D(4096)R–D(4096)R–D(4096)R 8.23 5.05 62.5 6.14
13 D(4096)S–D(4096)S–D(4096)S–D(4096)S 1350 197 L L
14 D(4096)T–D(4096)T–D(4096)T–D(4096)T 1740 46.0 L L
15 D(4096)E(0.05)i–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 220 5.10 64.6 5.55
16 D(4096)E(0.1)–D(4096)E(0.1)–D(4096)E(0.1)–D(4096)E(0.1) 227 5.03 70.3 5.93
17 D(4096)E(0.15)–D(4096)E(0.15)–D(4096)E(0.15)–D(4096)E(0.15) 206 5.13 74.5 7.13
18 D(4096)E(0.2)–D(4096)E(0.2)–D(4096)E(0.2)–D(4096)E(0.2) 238 5.39 81.7 6.18
19 D(4096)L(0.05)j–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)R 7.32 5.21 67.2 7.33
20 D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 232 4.96 65.5 6.82
21 D(4096)L(0.1)–D(4096)L(0.1)–D(4096)L(0.1)–D(4096)L(0.1) 270 5.09 72.2 6.13
22 C(64)kE(0.05)–Ml(2)–D(4096)E(0.05)–D(4096)E(0.05) 5.89 9.69 123 6.34
23 C(64)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 4.71 5.67 70.6 4.43
24 C(64)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 4.76 4.58 51.7 5.79
25 C(64)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05) 6.06 9.61 118 6.41
26 C(64)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 4.55 5.56 71.5 4.71
27 C(64)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 149 4.57 49.3 4.24
28 C(128)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05) 5.94 8.49 105 5.04
29 C(128)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 4.77 5.19 63.5 4.40
30 C(128)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 5.46 4.29 45.6 4.88
31 C(128)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05) 5.99 8.62 105 5.18
32 C(128)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)R 5.34 5.18 61.1 5.86
33 C(128)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 4.48 5.18 61.1 4.61
34 C(128)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 4.23 4.28 44.9 4.86
35 C(256)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05) 6.46 8.18 93.0 5.05
36 C(256)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 5.40 4.98 56.5 5.12
37 C(256)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 5.98 4.08 41.4 5.28
38 C(256)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05) 6.14 7.97 93.6 5.29
39 C(256)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 4.68 5.00 56.0 5.60
40 C(256)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 4.32 4.10 41.7 4.94
41 C(256)S–M(2)–D(4096)S–D(4096)S–D(4096)S–D(4096)S 11700 1400 L L
42 C(256)T–M(2)–D(4096)T–D(4096)T–D(4096)T–D(4096)T 11800 49.5 L L

Notes. Models trained for 20 epochs in batches of 64.
a Triangular2 learning rate policy ranging from 8 × 10−6

–5 × 10−3 with a complete cycle spanning eight epochs.
b Like LR1, but ranging from 10−5

–10−3.
c Constant learning rate of 10−5.
d Constant learning rate of 10−3.
e Dense layer with n nodes, D(n).
f ReLU activation.
g Sigmoid activation.
h tanh activation.
i ELU activation E(α), with scaling parameter α.
j Leaky ReLU activation L(m), with a slope of m for x < 0.
k Convolution1D layer with a kernel size of 3 and n nodes, C(n).
l MaxPooling1D layer M(s), with a pooling size s.

9

The Planetary Science Journal, 3:91 (12pp), 2022 April Himes et al.



importance of properly selecting the policy (described below).
Minor variations (e.g., models 28–30 LR1) can be attributed to
training randomness. ReLU and leaky ReLU activations tend to
have similar performance; leaky ReLU with a small parameter
tends to perform equivalently or better than ReLU (e.g., models
32 and 33). While these results point to deep architectures as
optimal configurations for this application of ML RT, tests
varying the spectral resolution, wavelength range, etc. are
necessary to definitively confirm if such variations change the
optimal architecture(s). A future investigation should consider
this in more detail.

Based on this grid search, we selected model 40. While a
similar architecture with ELU activations performed equiva-
lently (model 37), it took longer to train per epoch.
Additionally, we found that the retrieval accuracy did not
significantly change below some threshold validation loss (see
Appendix B), so training time is a more important considera-
tion than minor differences in minimum validation loss.

Our results show that, when the learning rate range is
properly chosen, cyclical learning rates outperform constant
learning rates, confirming the findings of Smith (2015) for this
particular problem. Select models do not follow this trend (e.g.,
models 31, 35, 38), which is likely attributable to the small
number of epochs considered in this grid search.

In Section 2, we state that we make the learning rate policy
selection as described in Smith (2015), except based on the loss
instead of the accuracy. Our selection process is to perform a
“range test” by training the model over a few epochs using a
learning rate policy that constantly increases from a very small
rate (e.g., 10−7) to a large rate (e.g., 10−1). Looking at a plot of
loss versus learning rate (e.g., Figure A1), the learning rate
range can be deduced based on when the loss begins decreasing
(minimum learning rate) and when the loss begins increasing
(maximum learning rate). In practice, we find more efficient
training using a range that is slightly interior to the extrema

determined via the plot. This is analogous to the method
described in Smith (2015), except that it is more straightfor-
ward to determine the learning rate boundaries.

Appendix B
Data Set Size Considerations

To briefly investigate the effect of data set size for our
problem, we consider three models in addition to that presented
in Section 2 (“Main”). The additional models are trained on
around 25% of the total data set (614,208 training, 171,584
validation, 78,848 testing). Two models were trained according
to the same learning rate policy as described in Section 2, for
187 and 500 epochs (“Sub1a” and “Sub1b”, respectively). The
third model was trained according to the LR2 learning rate
policy described in Appendix A for 500 epochs (“Sub2”). All
other setup parameters (e.g., data normalization) match those
described in Section 2.
Table B1 compares the normalized RMSE and denormalized

R2 test-set metrics over the high-resolution spectra, as well as
the Bhattacharyya coefficients for the retrieved 1D margin-
alized posteriors. Based on the differences between models
Sub1a and Sub1b (which only differ in the number of epochs
trained), it can be concluded that manually stopping training
once the loss begins to negligibly change does not have a major
effect on the model performance. The differences in perfor-
mance between models Sub1b and Sub2 (which only differ in
learning rate policies) illustrate the importance of selecting the
learning rate policy. However, both of these effects are
negligible compared to those of the data set size: the
differences among models Sub1a, Sub1b, and Sub2 are smaller
than the differences between model Main and Sub2 (the best-
performing Sub model). While Main and Sub2 underwent
similar numbers of total training steps, Main outperforms Sub2.
These results motivate the generation of large, comprehensive
data sets of spectra to train surrogate RT models, though further
research into how data set size, number of inputs/outputs, and
architecture complexity influence model performance is needed
to inform the optimal data set sizes for future investigations.

Figure A1. Example of a range test. The learning rate begins at a value too
small to make noticeable changes to the weights of the model. At a learning
rate of ∼4 × 10−4, the loss begins to decrease, indicating that the model has
begun learning. However, at a learning rate of ∼5 × 10−3, the loss begins to
behave erratically, and it becomes very large at a learning rate of 10−2. From
this, a learning rate policy varying between 6 × 10−4 and 4 × 10−3 would
likely perform well for this architecture.

Table B1
Model Comparison

Metric Model Min. Median Mean Max.

Normalized RMSE Main 0.00153 0.00224 0.00247 0.01040
Sub1a 0.00271 0.00373 0.00407 0.01846
Sub1b 0.00264 0.00365 0.00398 0.01679
Sub2 0.00224 0.00331 0.00366 0.01721

Denormalized R2 Main 0.99885 0.99993 0.99990 0.99997
Sub1a 0.99646 0.99980 0.99974 0.99991
Sub1b 0.99696 0.99981 0.99975 0.99992
Sub2 0.99740 0.99983 0.99977 0.99994

Bhattacharyya coeff. Main 0.9843 0.9948 0.9925 0.9972
Sub1a 0.9585 0.9858 0.9853 0.9991
Sub1b 0.8919 0.9933 0.9655 0.9976
Sub2 0.9783 0.9940 0.9918 0.9984

Note. See text for model descriptions.
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