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1 University of Oxford, United Kingdom
2 VinAI Research, Vietnam

Abstract

Domain adaptation is an important problem and often needed for real-world ap-
plications. In this problem, instead of i.i.d. datapoints, we assume that the source
(training) data and the target (testing) data have different distributions. With that
setting, the empirical risk minimization training procedure often does not perform
well, since it does not account for the change in the distribution. A common
approach in the domain adaptation literature is to learn a representation of the input
that has the same distributions over the source and the target domain. However,
these approaches often require additional networks and/or optimizing an adversarial
(minimax) objective, which can be very expensive or unstable in practice. To tackle
this problem, we first derive a generalization bound for the target loss based on
the training loss and the reverse Kullback–Leibler (KL) divergence between the
source and the target representation distributions. Based on this bound, we derive
an algorithm that minimizes the KL term to obtain a better generalization to the
target domain. We show that with a probabilistic representation network, the KL
term can be estimated efficiently via minibatch samples without any additional
network or a minimax objective. This leads to a theoretically sound alignment
method which is also very efficient and stable in practice. Experimental results also
suggest that our method outperforms other representation-alignment approaches.

1 Introduction

With advances in neural network architectures [13, 31], machine learning algorithms have achieved
state-of-the-art performance in many tasks such as object classification, object detection and natural
language processing. However, machine learning models have been focusing mostly on the case
of independent and identically distributed (i.i.d.) datapoints; and such an assumption often does
not hold in practice. When the i.i.d. assumption is violated and the target domain has a different
distribution compared to the source domain, a typical learner trained on the source data via empirical
risk minimization would not perform well at test time, since it does not account for the distribution
shift. To tackle this problem, many methods have been proposed for domain adaptation [34, 33, 7, 30]
and domain generalization [16, 25, 10], the goal of which is to train a machine learning algorithm
that can generalize well to the target domain.

A common approach to tackle these problems is to learn a representation such that its distribution
does not change across domains. There are two ways this can be learnt: marginal alignment (aligning
the marginal distribution of the representation) and conditional alignment (aligning the conditional
distribution of the label given the representation) [26, 30]. For domain adaptation and domain
generalization problems with multiple source domains, we can use the data and labels to align both
the marginal and the conditional distributions across the source domains, aiming to generalize to the
target domain. However, in a single-source domain adaptation problem, with only unlabeled data
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from the target domain, it is only possible to align the marginal distribution of the representation.
This marginal alignment should help the classifier avoid out-of-distribution data at test time.

This paper focuses on such a single-source domain adaption problem, which is also one of the most
common settings in practice. Current marginal alignment techniques usually require additional
computation (e.g., of an additional network) [9, 22] and/or a minimax objective [9, 28], leading
to an expensive and/or unstable training procedure [11, 19]. For example, DANN [9] employs
an adversarial training procedure, with a domain discriminator that classifies the domain of the
representation, and maximizes the adversarial loss of the discriminator. When the discriminator
is completely fooled, the marginal distribution of the representation is aligned across domains.
MMD [22] utilizes maximum mean discrepancy to align the representation distribution. This does not
use a mimimax objective, thus leading to a more stable training; however, it does require additional
computation of several Gaussian kernels.

To address the above issues, we derive a generalization bound on the loss of the target domain using
the training loss and a reverse Kullback–Leibler (KL) divergence between the source and target
distributions. There are existing bounds of the target loss in the literature [4], however, these analyses
focus mostly on the case of binary classification and the bounds use a total variation distance or a
H-divergence between the distributions, which are not easy to estimate in practice (for example,
Ajakan et al. [1] require an adversarial network to estimate theH-divergence). In this paper, we show
that with a probabilistic representation network, we can estimate the KL divergence easily using
samples, leading to an alignment method that requires virtually no additional computation nor a
minimax objective. Therefore, our training procedure is simple and stable in practice. Moreover, the
reverse KL has the zero-forcing effect [24], which is very effective to alleviate the out-of-distribution
problem in practice. This can be explained as follows: the out-of-distribution problem arises when
the classifier faces a new representation at test time that is in a (near) zero mass region of the source
representation distribution (and thus it never faced before). The reverse KL tends to force the target
representation distribution to have (near) zero mass wherever the source distribution has (near) zero
mass (this is the zero-forcing property), which helps the classifier avoid out-of-distribution data. The
reverse KL also has the mode-seeking effect [24] which allows for a more flexible alignment of
the representation (to one or some of the modes of the source domain). For example, consider the
classification problem of buildings (houses, hotels, etc.) where source images are collected from
urban and remote areas of a country (two modes); while the target images are collected from urban
areas but from a different country. Ideally, we want to match the representation distribution of the
target domain to that of the first mode of the source domain since they are both from urban areas. The
reverse KL allows this flexible alignment (as it results in a relatively small value of the reverse KL)
due to its mode-seeking property. Meanwhile, other distance metrics aim to match the whole source
and target representation distribution, which might collapse the two modes of the source domains.

Our contributions in this work are:

• We construct a generalization bound of the test loss in the domain adaptation problem using
the reverse KL divergence.

• We propose to reduce the generalization bound by minimizing the above KL term. Further-
more, we show that with a probabilistic representation, the KL term can be estimated easily
using minibatches, without any additional computation or a minimax objective as opposed
to most existing works.

• We conduct extensive experiments and show that our method significantly outperforms
relevant baselines, namely ERM [6], DANN [9], MMD [22], CORAL [29] and WD [28].
We empirically show that the reverse KL divergence is a very effective distance metric for
representations since it is very stable and efficient to compute in practice.

2 Related Work

Generalization bound for the distribution shift problem There exist works studying bounds
for the distribution shift problem in the literature [4, 23]. However, their analyses are limited to
the case of binary labels for classification. Moreover, these works assume deterministic labeling
functions (with a L1 or L2 distance as the loss between them), which is not true for most datasets in
practice. Therefore, their analyses cannot be generalized to the general case of supervised learning.
The differences between our bound and theirs are as follows. First of all, our bound works for
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the general case of supervised learning: it works for both the classification (including multiclass
classification) and regression problems, it makes no assumptions about the labeling mechanism (can
be probabilistic or deterministic), and it works for virtually all predictive distributions commonly
used in practice. Secondly, our bound uses a different divergence metric, namely KL, which is easier
to estimate in practice compared to total variation or H-divergence. We provide a brief review of
the above bounds and discuss their differences to ours in more detail in our appendix. Some specific
cases of distribution shift have also been studied. For example, Cortes et al. [8] and Johansson
et al. [14] study the generalization bound for the covariate shift problem, i.e., pT (x) 6= pS(x)
but pT (y|x) = pS(y|x), where pS is the source distribution and pT is the target distribution. In
contrast, Azizzadenesheli et al. [3] provide a generalization bound for the label shift problem, i.e.,
pT (y) 6= pS(y) but pT (x|y) = pS(x|y).

Domain adaptation While the literature on the domain adaptation problem is vast, we cover the
most closely related works to ours here. A common method for the domain adaptation problem is to
align the marginal distribution of the representation between the source and target domains. DANN
[9] employs a domain discriminator to classify the domain of a representation and maximizes its
adversarial loss (a minimax game). WD [28] uses a neural network function f (which is 1-Lipschitz
continuous) to calculate the Wasserstein distance between two distributions and minimizes it. This is
also a minimax game since the Wasserstein distance is the supremum over the search space of f . MMD
[22] uses the maximum mean discrepancy to align the representation distribution. This method does
not need a minimax objective; however, it requires additional computation of several Gaussian kernels.
Finally, CORAL [29] matches the first two moments of the distribution; and while being a simple
method, it fails to align more complex distributions. We consider these marginal alignment techniques
our main baselines since our method falls into this category, and investigate the effectiveness of the
reverse KL divergence as a distance metric between representations. Recently, more sophisticated
alignment methods [15, 32] have been proposed for the domain adaptation problem, which achieve
state-of-the-art performance. Instead of simply aligning the marginal distribution of the representation,
these methods minimize the intra-class distance of the representation across domains, and maximize
the inter-class distance between them, using the MMD or L2 distance. However, they require pseudo
labels for the target domain (obtained via clustering). Moreover, they are complimentary to our
method, as we conjecture that our method can also be used in conjunction with these, leading to the
same algorithms but with the KL distance instead of MMD or L2.

3 Approach

3.1 Problem Statement

In this paper, we consider one of the most common domain adaptation settings, which consists of
a single-source domain S with the joint data distribution pS(x, y) and a target domain T with the
data distribution pT (x, y), where x denotes the input sample and y is the label. We assume that
these two domains have the same support sets X ,Y . Regarding the training process of the domain
adaptation problem, we further denote a labeled dataset of size NS sampled from the source domain
(x

(i)
S , y

(i)
S )NS

i=1, where (x
(i)
S , y

(i)
S ) ∼ pS(x, y), and an unlabeled dataset of size NT from the target

domain (x
(i)
T )NT

i=1, where x(i)
T ∼ pT (x).

The goal of a typical domain adaptation framework is to train a model with the labeled dataset of
the source domain together with the unlabeled dataset from the target domain, so that the model will
perform decently in the target domain. Note that this is only effective if the labeling mechanism is
not too different between the source and the target domains.

In the domain adaption problem, we expect the changes in the marginal distribution so that pS(x) 6=
pT (x), or the conditional distribution so that pS(y|x) 6= pT (y|x), or both, which often makes the
typical empirical risk minimization training procedure ineffective. This motivates a line of approaches
that learn a representation z of x whose marginal and conditional distributions are more aligned
across the domains and use it for the prediction task, aiming at a better generalization performance to
the target domain.

The general representation learning framework aims to learn a representation z from x with the
mapping p(z|x), which can be deterministic or probabilistic. That latent presentation z is expected to
contain the label-related information; and is then used to predict the label y (by a classifier). Note

3



	𝑦

	𝑥 	𝑧

Source Distribution

Joint: 𝑝& 𝑥, 𝑦, 𝑧 = 𝑝& 𝑥, 𝑦 𝑝(𝑧|𝑥)

	𝑦

	𝑥 	𝑧

Target Distribution

Joint: 𝑝, 𝑥, 𝑦, 𝑧 = 𝑝, 𝑥, 𝑦 𝑝(𝑧|𝑥)

Figure 1: Graphical model. Note that the distribution p(z|x) (green edge), corresponding to our representation
network, is shared between the source and target domains.

that since the source and target domains have the same support set for x and share the representation
mapping p(z|x), they also have the same support set for z, denoted by Z . Given the representation z,
we learn a classifier to predict y throuh the predictive distribution p̂(y|z) that is an approximation of the
ground truth conditional distribution pS(y|z). During training, the representation network p(z|x) and
the classifier p̂(y|z) are trained jointly on the source domain and we “hope” that they can generalize to
the target domain, meaning that both p(z|x) and p̂(y|z) are kept unchanged between the two domains
(this will be formalized below). The graphical model of that representation learning process is
represented in Figure 1. In this paper, we consider a probabilistic representation mapping; specifically,
the representation network will output µ(x) and σ2(x) and p(z|x) = N (z;µ(x), diag(σ2(x))),
where N denotes a Gaussian distribution.

The joint distributions of x, y, z for the source and target domains can be represented as follows

pS(x, y, z) = pS(x, y)p(z|x) , pT (x, y, z) = pT (x, y)p(z|x) . (1)

and we define the predictive distribution of y given x as

p̂(y|x) = Ep(z|x)[p̂(y|z)] . (2)

Remark 1. On the inference complexity of a probabilistic representation.
Using a probabilistic representation, we need to sample multiple z from p(z|x) to estimate Eq. 2

during test time. However, this is not a big issue for the representation learning framework, since we
only need to run the representation network p(z|x) (which is usually deep) once to get a distribution
of z. After sampling multiple z from that distribution, we only need to rerun the classifier p̂(y|z),
which is usually a small network (e.g., often contains one layer). Furthermore, we can also run p̂(y|z)
(a small network) in parallel for multiple z to reduce inference time if necessary.

During training, we usually sample a single z from p(z|x) for each input x. The training objective is

ltrain = Ex,y∼pS(x,y),z∼p(z|x)[− log p̂(y|z)] (3)

(this is also the upper bound of EpS(x,y)[− log p̂(y|x)] via Jensen Inequality)

= EpS(z,y)[− log p̂(y|z)] (4)

where − log p̂(y|z) is the loss of a “data point” (z, y). For common choices of the predictive
distribution in the classification and regression problems, this is a non-negative quantity. For example,
for a classification problem with a categorical predictive distribution, this becomes the cross-entropy
loss, while for a regression problem with a Gaussian predictive distribution (with a fixed variance), it
becomes the squared error (with an additive constant).

Minimizing ltrain will enforce p̂(y|z) ≈ pS(y|z).

We consider the below two assumptions of the representation z on the source domain:
Assumption 1. IS(z, y) = IS(x, y), where IS(·, ·) is the mutual information term, calculated on the
source domain. In particular:

IS(z, y) = EpS(z,y)

[
log

pS(z, y)

pS(z)pS(y)

]
; IS(x, y) = EpS(x,y)

[
log

pS(x, y)

pS(x)pS(y)

]
(5)

This is often referred to as the “sufficiency assumption” since it indicates that the representation z has
the same information about the label y as the original input x, and is sufficient for this prediction task
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(in the source domain). Note that the data processing inequality indicates that IS(z, y) ≤ IS(x, y),
so here we assume that z contains maximum information about y.
Remark 2. Assumption 1 is an optimization goal of the training process on the source domain.

In particular, ltrain (with an additive constant) is an upper bound of −IS(z, y), which is an upper
bound of −IS(x, y). Thus, minimizing ltrain will enforce IS(z, y) to be equal to IS(x, y). For a
more detailed discussion of this, please refer to, for example, Alemi et al. [2].
Assumption 2. pS(y|x) = Ep(z|x)[pS(y|z)] ∀x, y ∈ X ,Y

When this assumption holds, the predictive distribution in Eq. 2 will approximate pS(y|x), as long as
p̂(y|z) approximates pS(y|z).
Remark 3. Assumption 2 is also an optimization goal of the training process on the source domain.

This is because ltrain is an upper bound of EpS(x,y)[− log p̂(y|x)], which is an upper bound
of EpS(x,y)[− log pS(y|x)]. Thus, minimizing ltrain will enforce p̂(y|x) to be equal to pS(y|x).
Therefore, pS(y|x) ≈ p̂(y|x) = Ep(z|x)[p̂(y|z)] ≈ Ep(z|x)[pS(y|z)].
These two assumptions ensure that our network has good performance on the source domain.

Note also that we only make the above two assumptions about the source domain, where we can
enforce them through the training process. We do not make these assumptions about the target
domain, since we have no access to the full target distribution. These two assumptions will also be
used to prove our later theoretical result (Proposition 2).

3.2 KL Guided Domain Adaptation

Now we will consider the test loss in the domain adaptation problem, and how we can reduce it. The
test loss (of the target domain) is:

ltest = EpT (x,y)[− log p̂(y|x)] = EpT (x,y)[− logEp(z|x)[p̂(y|z)]] (6)

≤ EpT (x,y)[Ep(z|x)[− log p̂(y|z)]] (Jensen Inequality) (7)

= EpT (z,y)[− log p̂(y|z)] (8)

Note that if the representation z is invariant (both marginally and conditionally), then pT (z, y) =
pS(z, y) and Eq. 8 becomes ltrain, and we have a perfect generalization between the source domain
and the target domain. However, there is no way to guarantee the invariance, since we do not know
the target domain and the target data distribution. In that case, we introduce the following proposition
that ensures a generalization bound of the test loss based on the training loss and the KL divergence:
Proposition 1. If the loss − log p̂(y|z) is bounded by M 1 ∀z ∈ Z, y ∈ Y , we have:

ltest ≤ ltrain +
M√

2

√
KL[pT (y, z)|pS(y, z)] (9)

= ltrain +
M√

2

√
KL[pT (z)|pS(z)] + EpT (z) [KL[pT (y|z)|pS(y|z)]] (10)

Proof. provided in the appendix.

This bound is similar to other bounds in the literature (e.g., Ben-David et al. [4]) in the sense that it
also contains the training loss, a marginal misalignment term and a conditional misalignment term
(KL[pT (z)|pS(z)] and EpT (z) [KL[pT (z)|pS(z)]] respectively in our case). However, Ben-David et al.
[4] consider a binary classification problem and their bounds are only practical for a deterministic
labeling function; while our bound works for the general case of supervised learning with any labeling
mechanism. For a brief review of these bounds and a detailed discussion about their differences to
ours, please refer to our appendix. Note that the bound in Proposition 1 is also true when applying to

1In the classification problem, we can enforce this quite easily by augmenting the output softmax of the
classifier so that each class probability is always at least exp (−M). For example, if we choose M = 3 ⇒
exp (−M) ≈ 0.05, and if the output softmax is (p1, p2, ..., pC), we can augment it into (p1 ·K + 0.05, p2 ·
K +0.05, ..., pC ·K +0.05), where K = 1− 0.05 ·C and C is the number of classes. This ensures the bound
for the loss of a datapoint, while remaining the output prediction class.
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(a) (b) (c)

Figure 2: Reverse KL allows a flexible alignment of the representation while still effectively preventing the
out-of-distribution problem. (a) Source representation distribution (black). Consider the case where the data
distribution pS(x) of the source domain has two modes, then the representation distribution pS(z) will likely also
have two modes; and consider the case where the target distribution has only one mode. (b) An acceptable target
representation distribution (green) that helps the classifier avoid the out-of-distribution problem. Reverse KL
allows for this type of flexible alignment (match to one/some of the modes) due to its mode-seeking nature. (c) A
problematic target representation distribution (red), since the classification network will face out-of-distribution
data at test time, in the area between the two modes. Reverse KL will prevent this due to its zero-forcing nature.

the input space directly (e.g., replacing z with x). However, we are more interested in the bound in
the representation space, since we can reduce it by regularizing the KL term.

To reduce the generalization gap, we want pT (z, y) to be close to pS(z, y). Aligning the marginal
distribution (i.e., pS(z) ≈ pT (z)) helps the classifier network p̂(y|z) avoid out-of-distribution data
since the target representations it faces at test time belong to the source representation distribution
which it was trained on; while aligning the conditional distribution (pS(y|z) ≈ pT (y|z)) makes
sure the classifier gives more accurate predictions on the target domain since p̂(y|z) was trained to
approximate pS(y|z). In the domain adaptation problem, since we only have the unlabeled data from
the target domain, we often align the marginal distribution of z only. However, one problem is that the
conditional misalignment also depends on the representation z, and when learning a representation z
that aligns the marginal, we might accidentally increase EpT (z) [KL[pT (y|z)|pS(y|z)]] at the same
time, leading to a net increase in the above generalization bound. For example, what if (and is it
possible that) the conditional misalignment increases to infinity while we learn a representation z?

Therefore, it is crucial that we can bound the above conditional misalignment. The below proposition
handles this problem.

Proposition 2. If Assumption 1 and 2 hold, and if pT (x,y)
pS(x,y) <∞, we have:

EpT (z) [KL[pT (y|z)|pS(y|z)]] ≤ EpT (x) [KL[pT (y|x)|pS(y|x)]] (11)

Proof. provided in the appendix.

This shows that the conditional misalignment in the representation space is bounded by the conditional
misalignment in the input space. It then follows that:

ltest ≤ ltrain +
M√

2

√
KL[pT (z)|pS(z)] + EpT (x) [KL[pT (y|x)|pS(y|x)]]. (12)

Since EpT (x) [KL[pT (y|x)|pS(y|x)]] is fixed (i.e., not dependent on the representation z), to reduce
the generalization bound in Eq. 12, we can focus on minimizing KL[pT (z)|pS(z)], with the objective:

ltrain + βKL[pT (z)|pS(z)], (13)
where β is a hyper-parameter.

In practice, we found out that adding an auxiliary term KL[pS(z)|pT (z)] (forward KL) with a small
coefficient βaux to the objective helps to align the distribution faster, leading to the objective:

ltrain + βKL[pT (z)|pS(z)] + βauxKL[pS(z)|pT (z)] (14)

Discussion on the use of reverse KL: Our derivation leads to the reverse KL term
KL[pT (z)|pS(z)] as a regularizer of the distance between the two domains representations. We
argue that there are several reasons that make this a good choice as a distance metric between the
source and target representation distributions. (1) First of all, as mentioned earlier, the KL term can
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be computed easily without any additional network or a minimax objective (details in Subsection 3.3).
This leads to an efficient and stable training procedure, which often results in improved performance.
(2) Secondly, the reverse KL has the zero-forcing/mode-seeking effect [24] that helps to alleviate the
out-of-distribution problem. Specifically, the reverse KL forces the target representation distribution
to have zero mass wherever the source distribution has zero mass (zero-forcing), thus preventing the
out-of-distribution data at test time (Figure 2c). On the other hand, its mode-seeking nature allows
flexible alignment of the representation. For example, consider the case where the source domain is a
mixture of two components (Figure 2a, i.e., it has two modes), and the target distribution is close
to one of the two components. Ideally, we want to learn a representation network that matches the
representation of the target domain to that of the corresponding component on the source mixture
(Figure 2b). This representation will still perform well at test time since we would not have the
out-of-distribution problem (the classification network is already trained on this mode of the source
distribution). This flexible alignment (to one or some of the modes) is accepted by the reverse KL
since it leads to a relatively small reverse KL value. Meanwhile, other distance metrics such as
DANN, MMD, CORAL and WD aim to match the representation distribution of the target domain
and that of the whole source domain together, which could compress the representation too much,
negatively affecting its expressive power. For instance, in the above example, trying to match the
whole distribution of source and target domains based on other distance metrics might force the two
modes of the source domain to collapse. The flexible alignment of the reverse KL (while still being
very effective to prevent out-of-distribution data) might be beneficial in some practical cases.

3.3 Optimization

In practice, we estimate Eq. 14 using minibatches. In particular, given a labelled minibatch
(x̃

(i)
S , ỹ

(i)
S )Bi=1 of the source domain and an unlabelled one (x̃

(i)
T )Bi=1 of the target domain, and a

single sampled representation for each x: (z̃
(i)
S )Bi=1 and (z̃

(i)
T )Bi=1, we can get an unbiased estimator

of the objective 14 as follows:
ltrain + βKL[pT (z)|pS(z)] + βauxKL[pS(z)|pT (z)]

=EpS(z,y)[− log p̂(y|z)] + βEpT (z)[log pT (z)− log pS(z)] + βauxEpS(z)[log pS(z)− log pT (z)]

≈ 1

B

B∑
i=1

− log p̂(ỹ
(i)
S |z̃

(i)
S ) + β

1

B

B∑
i=1

[
log pT (z̃

(i)
T )− log pS(z̃

(i)
T )
]

+ βaux
1

B

B∑
i=1

[
log pS(z̃

(i)
S )− log pT (z̃

(i)
S )
]

(15)

However, it still requires knowing pS(z) and pT (z) to compute Eq. 15. We also use the minibatch to
approximate these quantities:

pS(z) = EpS(x)[p(z|x)] ≈ 1

B

B∑
i=1

p(z|x(i)
S ); pT (z) = EpT (x)[p(z|x)] ≈ 1

B

B∑
i=1

p(z|x(i)
T ). (16)

Intuitively, we use a minibatch of data to construct a distribution of the representation z (which is a
mixture of B components), and match that distribution for the two domains with the KL divergence.

Although the estimator in Eq. 15 is unbiased, the approximations in Eq. 16 will introduce some bias
into our estimator. However, the estimator is still consistent (i.e., it becomes exact when B →∞).
Therefore, we conjecture that the batch size might have an effect on the performance of the model.
We verify this observation with an ablation study in Section 4.

As mentioned earlier, we use a Gaussian distribution with a diagonal covariance matrix for the
representation p(z|x), and employ the reparameterization trick [18] to sample z.

4 Experiments

4.1 Datasets

RotatedMNIST consists of 70,000 MNIST [20] images that are divided into six domains, each with
11,666 images. The images in each domain are rotated counter-clockwise by 0◦, 15◦, 30◦, 45◦, 60◦
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and 75◦ respectively. We denote the six domains asM0,M15,M30,M45,M60 andM75. We use
M0 as the source domain, and perform five experiments, each withM15,M30,M45,M60 orM75

as the target domain. The task is classification of the ten digit labels.

PACS [21] contains 9,991 images from four different domains: art painting, cartoon, photo, sketch.
The task is classification with seven classes. We consider all possible ordered pairs of domains as a
source–target pair, leading to 12 experiments in total.

4.2 Baselines

We consider all common marginal alignment methods for domain adaptation as our baselines,
including DANN [9], MMD [22], CORAL [29] and WD [28]. We also consider ERM [6] (empirical
risk minimization) and its variant ERM (prob) (same as ERM but with the probabilistic representation
network used in our model). For ERM, DANN, MMD and CORAL, we follow the implementation
by Gulrajani and Lopez-Paz [12]; while for ERM (prob) and WD, we use our own implementation in
Pytorch [27]. For the full description of these baselines, please refer to our appendix.

4.3 Experimental Setting

In each experiment, we split both the source and the target data into two portions: 80% and 20%. We
use 80% of the source domain data and 80% of the target domain data (without the labels) as the
training data. We use the remaining 20% of the source data as the validation set, and the remaining
20% of the target domain data as the test set. Note that we do not use the labeled data from the target
domain during training or validation. This evaluation protocol is recommended by [12].

For the MNIST experiment, we use a simple convolutional neural network with four 3×3 convolu-
tional layers (followed by an average pooling layer) as the representation network. For PACS, we use
a Resnet18 as the representation network. Only the last layer of the representation network differs for
a deterministic representation (ERM, DANN, CORAL, MMD, WD) and a probabilistic one (ERM
(prob) and KL (ours)). For a representation of size dz , the last layer’s dimension of a deterministic
representation network is dz , while that of a probabilistic network is 2 · dz (dz for µ and dz for σ2).

We train each model for 100 epochs. To avoid hyperparameter bias, we tune the hyperparameters
(learning rate, regularizer coefficients, weight decay, representation dimension and dropout rate)
for each method and dataset independently. Following Gulrajani and Lopez-Paz [12], we perform
a random search [5] of 20 sets of hyperparameters over a predefined grid. We re-run each set of
hyperparameters three times. This is an extensive set of experiments, and we have run thousands
of models for the RotatedMNIST and PACS experiments (3 runs × 20 sets of hyperparameters ×
(12+5) experiments for each baseline). We train all models on an NVIDIA Quadro RTX 6000 GPU.

For details about the network and the range of hyperparameters, please refer to our appendix and our
source code.

4.4 Results

RotatedMNIST: Table 1 shows the results for the RotatedMNIST experiment. It is clear that in
this experiment, aligning the representation between domains does help improve the generalization
performance. Among the baselines (DANN, MMD, CORAL, WD), MMD performs the best,
which we attribute to the fact that it does not use a minimax objective, leading to more stable
optimization. Meanwhile, CORAL performs the worst, since it only matches the first two moments of
the distributions and might fail to align complex distributions. Our method, KL, largely outperforms
the baselines, indicating its effectiveness.

PACS: Table 2 presents the results for PACS, which is a challenging real-world dataset for domain
adaptaion/generalization. In this dataset, our model outperforms the ERM baselines by roughly 9%
on average, indicating the effectiveness of our representation-alignment technique. Our method is
the best performer (with a large margin) on 8 out of 12 experiments, showing a clear benefit over
other representation alignment techniques. Together with our method, MMD again performs the best
among the representation-alignment baselines (DANN, MMD, CORAL and WD), confirming that a
stable training procedure (with no minimax objectives in MMD and our model) is important and often
leads to better results. It is also worth noting that our model still outperforms MMD despite being
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Table 1: Rotated MNIST experiments withM0 as the source domain.

Target Domain

Model M15 M30 M45 M60 M75 Average

ERM 97.5±0.2 84.1±0.8 53.9±0.7 34.2±0.4 22.3±0.5 58.4
ERM (prob) 96.8±0.3 83.2±1.6 51.3±0.9 31.4±1.1 20.7±0.7 56.7

DANN 97.3±0.4 90.6±1.1 68.7±4.2 30.8±0.6 19.0±0.6 61.3
MMD 97.5±0.1 95.3±0.4 73.6±2.1 44.2±1.8 32.1±2.1 68.6

CORAL 97.1±0.3 82.3±0.3 56.0±2.4 30.8±0.2 27.1±1.7 58.7
WD 96.7±0.3 93.1±1.2 64.1±3.3 41.4±7.6 27.6±2.0 64.6

KL (ours) 97.5±0.5 96.6±0.4 92.0±0.4 57.8±9.7 58.3±4.2 80.1

Table 2: PACS experiments.

Model

Experiments ERM ERM (prob) DANN MMD CORAL WD KL (ours)

A→ C 66.1±1.3 63.5±0.8 71.0±3.2 79.5±0.4 62.7±10.4 76.2±0.9 73.1±3.4
A→ P 94.3±0.6 93.5±1.3 94.5±0.5 94.5±1.1 86.3±6.8 92.4±1.3 95.4±1.2
A→ S 53.6±0.8 60.9±3.5 58.6±12.8 62.1±2.0 46.2±3.5 53.9±2.7 67.4±1.9
C→ A 69.7±1.1 70.8±2.3 76.4±1.7 79.5±3.0 75.9±0.9 69.0±2.1 83.3±1.1
C→ P 82.0±0.9 81.5±2.1 78.6±3.4 80.8±2.3 78.3±3.6 72.9±8.6 83.1±7.4
C→ S 72.2±1.4 70.4±1.5 76.1±1.0 74.1±1.3 56.9±11.0 48.7±6.1 68.2±0.5
P→ A 65.7±2.3 63.3±1.2 68.0±2.7 67.7±1.8 70.0±1.5 62.6±1.5 75.5±2.5
P→ C 29.1±1.9 27.2±3.3 50.7±5.0 47.4±0.8 47.5±8.6 56.1±1.4 67.7±1.2
P→ S 38.0±1.0 35.9±2.3 29.3±9.8 59.7±4.8 15.8±5.3 22.3±15.0 64.5±2.1
S→ A 41.3±6.5 40.9±3.9 39.2±3.5 40.0±3.3 39.1±4.8 36.1±9.5 48.2±2.4
S→ C 66.7±1.0 67.9±1.4 64.3±2.0 65.7±2.3 59.9±1.5 60.5±2.0 63.5±0.4
S→ P 49.3±3.3 46.0±4.7 44.3±4.0 45.1±0.9 37.4±2.7 38.5±5.6 39.1±3.4

Average 60.6 60.2 62.6 66.3 56.3 57.4 69.1

Table 3: Ablation study: Rotated MNIST experiments withM0 source andM30 target.

Batch size 256 128 64 32

KL (ours) 92.0±0.4 91.8±1.0 91.3±1.2 83.9±3.5

less computationally expensive (in this implementation, MMD needs to compute seven Gaussian
kernels for each of three pairs of representation sets in each minibatch).

It is interesting that the ERM baselines perform the best in some experiments (e.g., S→ C, S→ P).
This result also agrees with the one observed in Gulrajani and Lopez-Paz [12] that domain general-
ization/adaptation techniques might have negative effects when applied unsuccessfully. It should be
noted that the S (sketch) domain is undoubtedly the most different compared to others (only black
sketch on a white background while other domains have colors), which might explain the difficulty
when learning to transfer between domains.

4.5 Ablation Study

In this subsection, we conduct an ablation study to investigate the effect of the batch size on our
model’s performance. Table 3 shows the performance of our method on the RotatedMNIST dataset,
withM0 as the source domain andM45 as the target domain and with various choices of the batch
size. As expected, our model’s performance tends to benefit from a bigger batch size, since it would
alleviate the bias of our objective estimator. We therefore recommend increasing the batchsize
whenever possible. However, even with a batchsize of 64 (which is common for deep learning), the
model still performs reasonably well and significantly outperforms other baselines.
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5 Conclusion

In conclusion, in this paper we derive a generalization bound of the target loss in the domain adaptation
problem using the reverse KL divergence. We then show that with a probabilistic representation,
the KL divergence can easily be estimated using Monte Carlo (minibatch) samples, without any
additional computation or adversarial objective. By minimizing the KL divergence, we can reduce the
generalization bound and have a better guarantee about the test loss. We also empirically show that
our method outperforms relevant baselines with large margins, which we attribute to its simple and
stable training procedure and the mode-seeking/zero-forcing nature of the reverse KL. We conclude
that KL divergence is very effective as a distance metric between representations. In general, a
limitation of marginal alignment methods (ours included) is that when the conditional distribution
changes significantly from the source domain to the target domain, aligning the marginal would
not help the target domain’s performance. This is also reflected in our generalization bound. For
future work, we would want to investigate the use of KL divergence in other types of alignment. For
example, we can follow the algorithm in Kang et al. [15] to minimize the intra-class distance of the
representation across domains and maximize the inter-class distance between them, but using the KL
divergence instead of MMD as the distance metric. Another direction would be using KL divergence
to align the conditional distribution across domains in a multi-source setting.
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A Proofs

For the following proofs, we treat the variables as continuous variables and always use the integral. If
one or some of the variables are discrete, it is straight-forward to replace the corresponding integral(s)
with summation sign(s) and the proofs still hold.

A.1 Proposition 1

Proof. We have:

ltest ≤ EpT (z,y)[− log p̂(y|z)] (17)

=

∫
− log p̂(y|z)pT (z, y)dzdy (18)

=

∫
− log p̂(y|z)pS(z, y)dzdy +

∫
− log p̂(y|z) [pT (z, y)− pS(z, y)] dzdy (19)

= ltrain +

∫
− log p̂(y|z) [pT (z, y)− pS(z, y)] dzdy (20)

LetA = {(z, y)|pT (z, y)− pS(z, y) ≥ 0} and B = {(z, y)|pT (z, y)− pS(z, y) < 0}, using the fact
that − log p̂(y|z) ≥ 0 ∀z ∈ Z, y ∈ Y we have:

∫
− log p̂(y|z) [pT (z, y)− pS(z, y)] dzdy (21)

=

∫
A
− log p̂(y|z) [pT (z, y)− pS(z, y)] dzdy +

∫
B
− log p̂(y|z) [pT (z, y)− pS(z, y)] dzdy

(22)

≤
∫
A
− log p̂(y|z) [pT (z, y)− pS(z, y)] dzdy (23)

=

∫
A
− log p̂(y|z) |pT (z, y)− pS(z, y)| dzdy (24)

≤M
∫
A
|pT (z, y)− pS(z, y)| dzdy (25)

(since− log p̂(y|z) ≤M) (26)

where |.| is the absolute value.

Here,
∫
A |pT (z, y)− pS(z, y)| dzdy is also called the total variation of the two distributions pT (z, y)

and pS(z, y).
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Note that: ∫
pT (z, y)− pS(z, y)dzdy = 0 (27)

⇔
∫
A
pT (z, y)− pS(z, y)dzdy +

∫
B
pT (z, y)− pS(z, y)dzdy = 0 (28)

⇔
∫
A
pT (z, y)− pS(z, y)dzdy =

∫
B
pS(z, y)− pT (z, y)dzdy (29)

⇔
∫
A
|pT (z, y)− pS(z, y)| dzdy =

∫
B
|pT (z, y)− pS(z, y)| dzdy (30)

⇔
∫
A
|pT (z, y)− pS(z, y)| dzdy =

1

2

∫
|pT (z, y)− pS(z, y)| dzdy (31)

Therefore:

ltest ≤ ltrain +M

∫
A
|pT (z, y)− pS(z, y)| dzdy (32)

= ltrain +
M

2

∫
|pT (z, y)− pS(z, y)| dzdy (33)

Using the Pinsker’s inequality, we have:(∫
|pT (z, y)− pS(z, y)| dzdy

)2

≤ 2

∫
pT (z, y) log

pT (z, y)

pS(z, y)
dzdy (34)

Therefore, we finally have:

ltest ≤ ltrain +
M

2

√
2

∫
pT (z, y) log

pT (z, y)

pS(z, y)
dzdy (35)

= ltrain +
M√

2

√
KL[pT (z, y)|pS(z, y)] (36)

Which concludes our proof.

Also note that the KL divergence between pT (z, y) and pS(z, y) can further be decomposed into the
marginal misalignment and conditional misalignment as follow:
KL[pT (z, y)|pS(z, y)] = EpT (z,y)[log pT (z, y)− log pS(z, y)] (37)

= EpT (z,y)[log pT (z) + log pT (y|z)− log pS(z)− log pS(y|z)] (38)

= EpT (z,y)[log pT (z)− log pS(z)] + EpT (z,y)[log pT (y|z)− log pS(y|z)]
(39)

= EpT (z)[log pT (z)− log pS(z)]

+ EpT (z)

[
EpT (y|z)[log pT (y|z)− log pS(y|z)]

]
(40)

= KL[pT (z)|pS(z)] + EpT (z) [KL[pT (y|z)|pS(y|z)]] (41)

A.2 Proposition 2

Proof. According to Assumption 1, we have:
IS(z, y) = IS(x, y) (42)

⇔HS(y)−HS(y|z) = HS(y)−HS(y|x) (43)
⇔HS(y|z) = HS(y|x) (44)
⇔EpS(z,y)[log pS(y|z)] = EpS(x,y)[log pS(y|x)] (45)

⇔EpS(x,z,y)[log pS(y|z)] = EpS(x,y)[log pS(y|x)] (46)

⇔EpS(x,y)

[
Ep(z|x)[log pS(y|z)]

]
= EpS(x,y)[log pS(y|x)] (47)

⇔EpS(x,y)

[
log pS(y|x)− Ep(z|x)[log pS(y|z)]

]
= 0 (48)
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According to Assumption 2, ∀x ∈ X , y ∈ Y we have:

pS(y|x) = Ep(z|x)[pS(y|z)] (49)

⇔ log pS(y|x) = logEp(z|x)[pS(y|z)] (50)

⇒ log pS(y|x) ≥ Ep(z|x)[log pS(y|z)] (51)

Since pT (x,y)
pS(x,y) <∞, there exists N > 0 such that pT (x,y)

pS(x,y) ≤ N ∀x ∈ X , y ∈ Y . Therefore:

EpT (x,y)

[
log pS(y|x)− Ep(z|x)[log pS(y|z)]

]
(52)

=EpS(x,y)

[(
log pS(y|x)− Ep(z|x)[log pS(y|z)]

) pT (x, y)

pS(x, y)

]
(53)

≤N.EpS(x,y)

[
log pS(y|x)− Ep(z|x)[log pS(y|z)]

]
(54)

=0 (55)

Therefore:

EpT (x,y)

[
log pS(y|x)− Ep(z|x)[log pS(y|z)]

]
= 0 (56)

⇔EpT (x,y) [log pS(y|x)] = EpT (x,y,z)[log pS(y|z)] (57)

⇔EpT (x,y) [log pS(y|x)] = EpT (z,y)[log pS(y|z)] (58)

We have:

EpT (z) [KL[pT (y|z)|pS(y|z)]] ≤ EpT (x) [KL[pT (y|x)|pS(y|x)]] (59)

⇔EpT (z,y) [log pT (y|z)− log pS(y|z)] ≤ EpT (x,y) [log pT (y|x)− log pS(y|x)] (60)

Using Eq 58, we now only need to prove that:

EpT (z,y) [log pT (y|z)] ≤ EpT (x,y) [log pT (y|x)] (61)

⇔−HT (y|z) ≤ −HT (y|x) (62)
⇔HT (y)−HT (y|z) ≤ HT (y)−HT (y|x) (63)
⇔IT (z, y) ≤ IT (x, y) (64)

(always true based on the Data Processing Inequality) (65)

B Review of existing generalization bounds

There have been several works studying the generalization bounds of the Domain Adaptation problem.
We briefly review the most important and common ones here with a discussion about their differences
to our proposed bound.

B.1 Ben-David et al. [4]

Ben-David et al. [4] consider a binary classification problem. Let x be the input with the support setX
and y be the binary label with the support setY = {0, 1}. Consider a source domain with a distribution
P s
X over the input x and the true labeling function fs : X → {0, 1}; and similarly a target domain

with a distribution P t
X over the input x and the true labeling function f t : X → {0, 1}. Note that the

authors claim that this labeling function can be probabilistic; in that case, f : X → [0, 1] denoting
the probability. However, we argue that this probabilistic setting is impractical since we would not
know that true underlying function in order to calculate the training loss in practice). Therefore, we
found that the bound is only practical for the case of a deterministic labeling mechanism.

The error of the classifier h, which is also a deterministc labeling function, on the source domain is:

εs(h) = Ex∼P s
X

[|h(x)− fs(x)|], (66)
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and similarly for the target domain:
εt(h) = Ex∼P t

X
[|h(x)− f t(x)|]. (67)

Here |.| is the absolute value, which mean the loss of a data point is the L1 distance of the labels.

Consider a hypothesis spaceH and let a classifier h be any function from that space. The first theorem
in Ben-David et al. [4] offers a bound of the target loss εt(h) based on the source loss εs(h), and the
total variation between P s

X and P t
X , and the difference between the two labeling function fs and f t:

Theorem 1 (Ben-David et al. [4])
εt(h) ≤ εs(h) + 2d1(P s

X , P
t
X) + min

PX∈{P s
X ,P t

X}
Ex∼PX

[|fs(x)− f t(x)|] (68)

where d1(P s
X , P

t
X) is the total variational distance, i.e., d1(P s

X , P
t
X) := supA∈X [P s

X(A)−P t
X(A)],

and X is the sigma-field of X (set of all subsets of X ).

In this theorem, the term 2d1(P s
X , P

t
X) presents the marginal misalignment and

minPX∈{P s
X ,P t

X} Ex∼PX
[|fs(x)− f t(x)|] is the conditional misalignment.

Ben-David et al. [4] also propose another bound based on a variant of the H-divergence, which is
presented in the following theorem:

Theorem 2 (Ben-David et al. [4])
εt(h) ≤ εs(h) + dH∆H(P s

X , P
t
X) + λH (69)

where the H∆H-divergence dH∆H(P s
X , P

t
X) := suph1,h2∈H |Prx∼P s

X
[h1(x) 6= h2(x)] −

Prx∼P t
X

[h1(x) 6= h2(x)]| replaces the total variation to measure the marginal misalignment of
the two domains. Meanwhile, λH = infh∈H[εs(h) + εt(h)] measures the conditional misalignment
of the two domains (if the two true labeling functions fs and f t are the same and belong to the
hypothesis spaceH, this quantity is zero).

The above bounds can also be applied to the representation space (similar to ours), leading to the
same bounds where the input x is replaced by its representation z.

Difference to our bound First of all, Ben-David et al. [4] only consider a binary classification
problem. Moreover, as discussed above, the bounds in Ben-David et al. [4] are only practical with
deterministic labeling mechanism for both domains. This assumption is hard to be true for most
datasets since the labeling mechanism is usually probabilistic. This makes it not generalizable to
the general case of supervised learning. Furthermore, the loss function is a L1 distance between the
labeling function, which is also not a common choice in practice, which makes it challenging to gen-
eralize to the multiclass classification set-up (even if the there exists a deterministic labeling function
for a multiclass dataset, using the L1 loss for the one-hot encoded labels would be unreasonable; the
common loss function in practice for the multiclass classification problem is the cross entropy loss).
Finally, the total variation andH-divergence might be hard to estimate in practice since it requires
the computation of a supremum.

B.2 Mansour et al. [23]

Mansour et al. [23] consider a more flexible problem set-up than Ben-David et al. [4]. Specifically,
instead of Y = {0, 1}, they consider the cases where Y = {0, 1} (for binary classification) or Y is
a measurable subset of R (for regression). Note that their bound still cannot work for multiclass
classfication. They also generalize the L1 loss function to a loss function L : Y × Y → R; however,
this loss function must obey the triangle inequality. Although the L1 distance satisfies this inequality,
it is not generally true for other common loss functions in practice (e.g., cross-entropy). They still
consider deterministic labeling function fs and f t for the source and target domain.

Similar to Ben-David et al. [4], with a hypothesis h from the hypothesis space H, the error of the
source and target domain are:

εs(h) = Ex∼P s
X

[L(h(x), fs(x))] (70)

εt(h) = Ex∼P t
X

[L(h(x), f t(x))] (71)
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For convenience, denote also the error between two labeling function h and h′ in the source and
target distribution as:

εs(h, h′) = Ex∼P s
X

[L(h(x), h′(x))] (72)

εt(h, h′) = Ex∼P t
X

[L(h(x), h′(x))] (73)

(which means εs(h) = εs(h, fs) and εt(h) = εt(h, f t)).

Also, let h∗s and h∗t be the minimizer of εs(h) and εt(h) respectively. In particular:

h∗s = arg min
h∈H

εs(h) = arg min
h∈H

Ex∼P s
X

[L(h(x), fs(x))] (74)

h∗t = arg min
h∈H

εt(h) = arg min
h∈H

Ex∼P t
X

[L(h(x), f t(x))] (75)

Mansour et al. [23] introduce a generalization bound as follow:

Theorem 3 (Mansour et al. [23]) Assume that the loss function L is symmetric and obeys the
triangle inequality. Then, for any hypothesis h ∈ H , the following holds

εt(h) ≤ εt(h∗t) + εs(h, h∗s) + disc(P s
X , P

t
X) + εt(h∗s, h∗t) (76)

where disc(P s
X , P

t
X) := suph,h′∈H |εs(h, h′) − εt(h, h′)|, which is a generalized version of the

H∆H-divergence.

Here, the first term εt(h∗t) is the ideal target loss (will be zero if the hypothesis space H contains
ft), the second term εs(h, h∗s) will be zero if we choose h = h∗s (which is the common practice,
e.g., train the classifier h on the source domain), the third term disc(P s

X , P
t
X) measures the marginal

misalignment, and the final term εt(h∗s, h∗t) is somewhat an indicator of the conditional misalignment
(becomes zero if fs = f t ∈ H).

Difference to our bound The above bound is based on the ideal target loss, while our bound is
based on the source loss. In practice, we have (an estimate) of the source loss calculated on the source
domain’s training set; meanwhile, the ideal target loss is unknown. This makes the above bound
less useful in practice compared to ours. Furthermore, the above bound has similar problems as the
ones in Ben-David et al. [4]: it does not work for multiclass classification, it assumes a deterministic
labeling mechanism (which does not holde in practice), it assumes the loss function obeys the triangle
inequality (which generally is not true in practice), and it contains terms that are not easy to compute
in practice (supremum and infimum).

C Detailed Experimental Settings

C.1 Baselines

ERM [6] is the typical empirical risk minimization training procedure, meaning that the model
is trained normally in the training data and does not account for the distribution shift (domain
adaptation).

ERM (prob): since we use a probabilistic network, we also include the probabilistic version of ERM.
This is similar to ERM but uses a probabilistic representation network (same as ours).

DANN [9] utilizes a discriminator to distinguish the representation from the source and target
domains. It uses an adversarial loss to enforce the distributions of the representation from source
domain and target domain are the same.

MMD [22] uses the maximum mean discrepancy (MMD) to align the representation’s distributions.

CORAL [29] aligns the representation distributions of the source and target domains by matching
their first two moments.

WD [28] uses the Wasserstein distance to match the distribution of the representation.
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C.2 Representation Network used in RotatedMnist

We use a simple CNN as the representation network in this experiment. This network is exactly the
same as the one used in Gulrajani and Lopez-Paz [12].

Our code is in PyTorch. The network is constructed by the following layers, where output_dim=128
for a deterministic representation network and output_dim=256 for a probabilistic representation
network:

- Conv2d(in_channels=1,out_channels=64,kernel_size=3,stride=1,padding=1)
- ReLU()
- GroupNorm(num_groups=8,num_channels=64)
- Conv2d(in_channels=64,out_channels=128,kernel_size=3,stride=2,padding=1)
- ReLU()
- GroupNorm(num_groups=8,num_channels=128)
- Conv2d(in_channels=128,out_channels=128,kernel_size=3,stride=1,padding=1)
- ReLU()
- GroupNorm(num_groups=8,num_channels=128)
- Conv2d(in_channels=128,out_channels=output_dim,kernel_size=3,stride=1,padding=1)
- ReLU()
- GroupNorm(num_groups=8,num_channels=output_dim)
- AdaptiveAvgPool2d(output_size=(1,1))

C.3 Hyper-parameters tuning

As mentioned in the main paper, we train each model for 100 epochs with each set of hyper-parameters.
We use the Adam optimizer [17] for all the models.

Belows are the hyper-parameters considered by the random search in our experiments for each
baseline. {.} means a set of hyper-parameters considered, while [., .] means a range of hyper-
parameters considered.

C.3.1 RotatedMNIST

The representation’s dimension is 128 (details in Section C.2). For even more details about the below
hyper-parameters, please refer to our provided code.

- ERM: learning rate: [10−4.5, 10−2.5], weight decay: 0.0, dropout rate: 0.0, batch size: [8, 512],
number of layers of the classifier (p̂(y|z)): 1 or 3.

- ERM (prob): learning rate: [10−4.5, 10−2.5], weight decay: 0.0, dropout rate: 0.0, batch size:
[8, 512], number of layers of the classifier (p̂(y|z)): 1 or 3.

- DANN [9]: learning rate: [10−4.5, 10−2.5], weight decay: 0.0, dropout rate: 0.0, batch size: [8, 512],
number of layers of the classifier (p̂(y|z)): 1 or 3, adversarial loss coefficient: [10−2, 102], weight
decay of discriminator: [10−6, 10−2], number of discriminator steps per generator steps: {1, 2, 4, 8},
grad penalty coefficient: [10−2, 101]

- MMD [22]: learning rate: [10−4.5, 10−2.5], weight decay: 0.0, dropout rate: 0.0, batch size: [8, 512],
number of layers of the classifier (p̂(y|z)): 1 or 3, MMD coefficient: [10−3, 10−1]

- CORAL [29]: learning rate: [10−4.5, 10−2.5], weight decay: 0.0, dropout rate: 0.0, batch size:
[8, 512], number of layers of the classifier (p̂(y|z)): 1 or 3, CORAL loss coefficient: [10−3, 10−1]

- WD [28]: learning rate: [10−4.5, 10−2.5], weight decay: 0.0, dropout rate: 0.0, batch size: [8, 512],
number of layers of the classifier (p̂(y|z)): 1 or 3, wasserstein distance coefficient: [10−2, 102],
weight decay of network f : [10−6, 10−2], number of f optimization steps per normal optimization
steps: {1, 2, 4, 8}, grad penalty coefficient: [10−2, 101]

- KL (ours): learning rate: [10−4.5, 10−2.5], weight decay: 0.0, dropout rate: 0.0, batch size: 256,
number of layers of the classifier (p̂(y|z)): 1, β : 0.3, βaux : 0.0
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C.3.2 PACS

The representation network is a Resnet18. For even more details about the below hyper-parameters,
please refer to our provided code.

- ERM: learning rate: [10−5, 10−3.5], weight decay: [10−6, 10−2], dropout rate: {0.0, 0.1, 0.5},
batch size: [8, 45], representation dimension: {16, 128, 256, 512}, number of layers of the classifier
(p̂(y|z)): 1 or 3.

- ERM (prob): learning rate: [10−5, 10−3.5], weight decay: [10−6, 10−2], dropout rate:
{0.0, 0.1, 0.5}, batch size: [8, 45], representation dimension: {16, 128, 256, 512}, number of layers
of the classifier (p̂(y|z)): 1 or 3.

- DANN [9]: learning rate: [10−5, 10−3.5], weight decay: [10−6, 10−2], dropout rate: {0.0, 0.1, 0.5},
batch size: [8, 45], representation dimension: {16, 128, 256, 512}, number of layers of the classifier
(p̂(y|z)): 1 or 3, adversarial loss coefficient: [10−2, 102], weight decay of discriminator: [10−6, 10−2],
number of discriminator steps per generator steps: {1, 2, 4, 8}, grad penalty coefficient: [10−2, 101]

- MMD [22]: learning rate: [10−5, 10−3.5], weight decay: [10−6, 10−2], dropout rate: {0.0, 0.1, 0.5},
batch size: [8, 45], representation dimension: {16, 128, 256, 512}, number of layers of the classifier
(p̂(y|z)): 1 or 3, MMD coefficient: [10−3, 10−1]

- CORAL [29]: learning rate: [10−5, 10−3.5], weight decay: [10−6, 10−2], dropout rate:
{0.0, 0.1, 0.5}, batch size: [8, 45], representation dimension: {16, 128, 256, 512}, number of layers
of the classifier (p̂(y|z)): 1 or 3, CORAL loss coefficient: [10−3, 10−1]

- WD [28]: learning rate: [10−5, 10−3.5], weight decay: [10−6, 10−2], dropout rate: {0.0, 0.1, 0.5},
batch size: [8, 45], representation dimension: {16, 128, 256, 512}, number of layers of the clas-
sifier (p̂(y|z)): 1 or 3, wasserstein distance coefficient: [10−2, 102], weight decay of network f :
[10−6, 10−2], number of f optimization steps per normal optimization steps: {1, 2, 4, 8}, grad
penalty coefficient: [10−2, 101]

- KL (ours): learning rate: 10−4, weight decay: [10−6, 10−2], dropout rate: 0.0, batch size: 256,
representation dimension: 16, number of layers of the classifier (p̂(y|z)): 1, β : {0.1, 0.05, 0.001},
βaux : {0.1, 0.05, 0.01, 0.0}
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