Automatic Differentiation (or Differentiable Programming)

Atılım Güneş Baydin

National University of Ireland Maynooth

Joint work with Barak Pearlmutter

Alan Turing Institute, February 5, 2016

- A brief introduction to AD
- My ongoing work

Vision

Functional programming languages with

- deeply embedded,
- general-purpose

differentiation capability, i.e., **automatic differentiation** (AD) in a functional framework

Vision

Functional programming languages with

- deeply embedded,
- general-purpose

differentiation capability, i.e., **automatic differentiation** (AD) in a functional framework

We started calling this **differentiable programming**

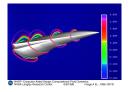
Christopher Olah's blog post (September 3, 2015) http://colah.github.io/posts/2015-09-NN-Types-FP/

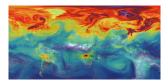
The AD field

AD is an active research area http://www.autodiff.org/

Traditional application domains of AD in industry and academia (Corliss et al., 2002; Griewank & Walther, 2008) include

- Computational fluid dynamics
- Atmospheric chemistry
- Engineering design optimization
- Computational finance





AD in probabilistic programming

(Wingate, Goodman, Stuhlmüller, Siskind. "Nonstandard interpretations of probabilistic programs for efficient inference." 2011)

- Hamiltonian Monte Carlo (Neal, 1994) http://diffsharp.github.io/DiffSharp/ examples-hamiltonianmontecarlo.html
- No-U-Turn sampler (Hoffman & Gelman, 2011)
- Riemannian manifold HMC (Girolami & Calderhead, 2011)
- Optimization-based inference

```
Stan (Carpenter et al., 2015)
http://mc-stan.org/
```

Many machine learning frameworks (Theano, Torch, Tensorflow, CNTK) handle derivatives for you

- You build models by defining computational graphs
 - \rightarrow (constrained) symbolic language
 - \rightarrow highly limited control-flow (e.g., Theano's $\mathtt{scan})$
- The framework handles backpropagation → you don't have to code derivatives (unless adding new modules)
- Because derivatives are "automatic", some call it "autodiff" or "automatic differentiation"

Many machine learning frameworks (Theano, Torch, Tensorflow, CNTK) handle derivatives for you

- You build models by defining **computational graphs**
 - \rightarrow (constrained) symbolic language
 - \rightarrow highly limited control-flow (e.g., Theano's $\mathtt{scan})$
- The framework handles backpropagation → you don't have to code derivatives (unless adding new modules)
- Because derivatives are "automatic", some call it "autodiff" or "automatic differentiation"

This is NOT the traditional meaning of **automatic differentiation** (AD) (Griewank & Walther, 2008)

Many machine learning frameworks (Theano, Torch, Tensorflow, CNTK) handle derivatives for you

■ You build models by defining **computational graphs**

 \rightarrow (constrained) symbolic language

- \rightarrow highly limited control-flow (e.g., Theano's $\mathtt{scan})$
- The framework handles backpropagation → you don't have to code derivatives (unless adding new modules)
- Because derivatives are "automatic", some call it "autodiff" or "automatic differentiation"

This is NOT the traditional meaning of **automatic differentiation** (AD) (Griewank & Walther, 2008)

Because "automatic" is a generic (and bad) term, **algorithmic differentiation** is a better name

- AD does not use symbolic graphs
- Gives numeric code that computes the function AND its derivatives at a given point

 $\begin{array}{cccc} f(a, b): & f'(a, a', b, b'): \\ c = a * b \\ d = \sin c \\ return d & \end{array} \xrightarrow{f'(a, a', b, b'): \\ (c, c') = (a*b, a'*b + a*b') \\ (d, d') = (\sin c, c' * \cos c) \\ return (d, d') \end{array}$

Derivatives propagated at the elementary operation level, as a side effect, at the same time when the function itself is computed

 \rightarrow Prevents the "expression swell" of symbolic derivatives

Full expressive capability of the host language

 \rightarrow Including conditionals, looping, branching

All **numeric evaluations** are sequences of elementary operations: a **"trace,"** also called a **"Wengert list"** (Wengert, 1964)

```
f(a, b):
    c = a * b
    if c > 0
    d = log c
    else
    d = sin c
    return d
```

All **numeric evaluations** are sequences of elementary operations: a **"trace,"** also called a **"Wengert list"** (Wengert, 1964)

```
f(a, b):
    c = a * b
    if c > 0
    d = log c
    else
    d = sin c
    return d
```

f(2, 3)

All **numeric evaluations** are sequences of elementary operations: a **"trace,"** also called a **"Wengert list"** (Wengert, 1964)

```
f(a, b): 	 a = 2
	 c = a * b
	 if c > 0 	 b = 3
	 d = log c
	 else 	 c = a * b = 6
	 d = sin c
	 return d 	 d = log c = 1.791
f(2, 3) 	 return 1.791
	 (primal)
```

All **numeric evaluations** are sequences of elementary operations: a **"trace,"** also called a **"Wengert list"** (Wengert, 1964)

f(a, b):	a = 2	a = 2
c = a * b		a' = 1
if c > 0	b = 3	b = 3
$d = \log c$		b' = 0
else	c = a * b = 6	c = a * b = 6
d = sin c		c' = a' * b + a * b' = 3
return d	$d = \log c = 1.791$	$d = \log c = 1.791$
		d' = c' * (1 / c) = 0.5
f(2, 3)	return 1.791	return 1.791, 0.5
	(primal)	(tangent)

All **numeric evaluations** are sequences of elementary operations: a **"trace,"** also called a **"Wengert list"** (Wengert, 1964)

f(a, b):	a = 2	a = 2
c = a * b		a' = 1
if c > 0	b = 3	b = 3
$d = \log c$		b' = 0
else	c = a * b = 6	c = a * b = 6
d = sin c		c' = a' * b + a * b' = 3
return d	$d = \log c = 1.791$	$d = \log c = 1.791$
		d' = c' * (1 / c) = 0.5
f(2, 3)	return 1.791	return 1.791, 0.5
	(primal)	(tangent)

i.e., a Jacobian-vector product $\mathbf{J}_f(1,0)|_{(2,3)} = \frac{\partial}{\partial a}f(a,b)|_{(2,3)} = 0.5$ This is called the **forward (tangent) mode** of AD

```
f(a, b):
    c = a * b
    if c > 0
    d = log c
    else
    d = sin c
    return d
```

f(2, 3)

```
f(a, b): a = 2
c = a * b b = 3
if c > 0
c = a * b = 6
d = \log c = 1.791
else
return 1.791
d = \sin c
return d
(primal)
```

f(2, 3)

 $f(a, b): \qquad a = 2$ $c = a * b \qquad b = 3$ if $c > 0 \qquad c = a$ $d = \log c \qquad d = 1$ else return $d = \sin c$ return d
(prime

f(2, 3)

 $b = 3 b = 3 b = 3 c = a * b = 6 c = a * b = 6 d = \log c = 1.791 d = \log c = 1 return 1.791 d' = 1 c' = d' * (1 / (primal) b' = c' * a = 0$

b = 3 c = a * b = 6 d = log c = 1.791 d' = 1 c' = d' * (1 / c) = 0.166 b' = c' * a = 0.333 a' = c' * b = 0.5 return 1.791, 0.5, 0.333

(adjoint)

a = 2

f(a, b):	a = 2	a = 2
c = a * b	b = 3	b = 3
if $c > 0$	c = a * b = 6	c = a * b = 6
d = log c	$d = \log c = 1.791$	$d = \log c = 1.791$
else	return 1.791	d' = 1
d = sin c		c' = d' * (1 / c) = 0.166
return d	(primal)	b' = c' * a = 0.333
		a' = c' * b = 0.5
f(2, 3)		return 1.791, 0.5, 0.333

(adjoint)

i.e., a transposed Jacobian-vector product $\left. \mathbf{J}_{f}^{T}(1) \right|_{(2,3)} = \left. \nabla f \right|_{(2,3)} = (0.5, 0.333)$

This is called the reverse (adjoint) mode of AD

Backpropagation is just a special case of the reverse mode: code a neural network objective computation, apply reverse AD

AD in a functional framework

AD has been around since the 1960s (Wengert, 1964; Speelpenning, 1980; Griewank, 1989)

The foundations for AD in a functional framework (Siskind & Pearlmutter, 2008; Pearlmutter & Siskind, 2008)

With research implementations

R6RS-AD

https://github.com/qobi/R6RS-AD

Stalingrad

http://www.bcl.hamilton.ie/~qobi/stalingrad/

- Alexey Radul's DVL https://github.com/axch/dysvunctional-language
- Recently, my DiffSharp library http://diffsharp.github.io/DiffSharp/

AD in a functional framework

"Generalized AD as a first-class function in an augmented λ -calculus" (Pearlmutter & Siskind, 2008)

Forward, reverse, and **any nested combination** thereof, instantiated according to usage scenario

Nested lambda expressions with free-variable references

 $\min (\lambda x \cdot (f x) + \min (\lambda y \cdot g x y))$ (min: gradient descent)

AD in a functional framework

"Generalized AD as a first-class function in an augmented λ -calculus" (Pearlmutter & Siskind, 2008)

Forward, reverse, and **any nested combination** thereof, instantiated according to usage scenario

Nested lambda expressions with free-variable references

 $\min (\lambda x \cdot (f x) + \min (\lambda y \cdot g x y))$ (min: gradient descent)

Must handle "perturbation confusion" (Manzyuk et al., 2012)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x \left(\frac{\mathrm{d}}{\mathrm{d}y} x + y \right) \Big|_{y=1} \right) \Big|_{x=1} \stackrel{?}{=} 1$$

DiffSharp

http://diffsharp.github.io/DiffSharp/

- implemented in F#
- generalizes functional AD to high-performance linear algebra primitives
- arbitrary nesting of forward/reverse AD
- a comprehensive higher-order API
- gradients, Hessians, Jacobians, directional derivatives, matrix-free Hessian- and Jacobian-vector products
- F#'s "code quotations" (Syme, 2006) has great potential for deeply embedding transformation-based AD

DiffSharp Higher-order differentiation API

	Op.	Value	Type signature	AD	Num.	Sym.
$f:\mathbb{R}\to\mathbb{R}$	diff diff' diff2 diff2' diff2'' diffn diffn	$\begin{array}{c} f' \\ (f,f') \\ f'' \\ (f,f'') \\ (f,f',f'') \\ f^{(n)} \\ (f,f^{(n)}) \end{array}$	$\begin{array}{l} (\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to \mathbb{R} \\ \mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to (\mathbb{R} \times \mathbb{R}) \\ (\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to (\mathbb{R} \times \mathbb{R} \times \mathbb{R}) \\ \mathbb{N} \to (\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to (\mathbb{R} \times \mathbb{R}) \end{array}$	X, F X, F X, F X, F X, F X, F X, F	A A A A A	X X X X X X X X X
$f:\mathbb{R}^n\to\mathbb{R}$	grad grad' gradv gradv' hessian hessian' hessian' gradhessian' gradhessian' gradhessian' laplacian'	$ \begin{array}{l} \nabla f \\ (f, \nabla f) \\ \nabla f \cdot \mathbf{v} \\ (f, \nabla f \cdot \mathbf{v}) \\ \mathbf{H}_{f} \\ (f, \mathbf{H}_{f}) \\ \mathbf{H}_{f} \\ (f, \mathbf{H}_{f}) \\ (\nabla f, \mathbf{H}_{f}) \\ (\nabla \nabla f, \mathbf{H}_{f}) \\ (\nabla \nabla f \cdot \mathbf{v}, \mathbf{H}_{f} \\ (\nabla \nabla f \cdot \mathbf{v}, \mathbf{H}_{f} \mathbf{v}) \\ (\nabla (f \cdot \mathbf{v}, \mathbf{H}_{f} \mathbf{v}) \\ (f, \nabla f \cdot \mathbf{v}, \mathbf{H}_{f} \mathbf{v}) \\ \mathbf{t} \\ (H_{f}) \\ (f, \mathrm{tr}(\mathbf{H}_{f})) \end{array} $	$ \begin{array}{l} \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R} \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R} \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R} \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \in \mathbb{R} \times \mathbb{R}^{n \times n} \right) \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \in \mathbb{R} \times \mathbb{R}^n \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}^n \rightarrow \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R} \rightarrow \mathbb{R} \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \rightarrow \mathbb{R}^n \rightarrow \mathbb{R} \right) \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \rightarrow \mathbb{R}^n \rightarrow \mathbb{R} \\ \left(\mathbb{R}^n \rightarrow \mathbb{R} \right) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R} \end{cases} \end{array}$	X, R X, F X, F X, F-F X, F-R X, F-R X, F-R X, R-F X, R-F X, R-F X, R-F X, R-F	A A A A A A A A A A A A A A	X X X X X X X X
$\mathbf{f}:\mathbb{R}^n \to \mathbb{R}^m$	jacobian jacobianv jacobianv jacobianv jacobianTv jacobianTv jacobianTv' jacobianTv' jacobianTv' div div div curl' div	$ \begin{array}{l} (f, I_f) \\ J_f \\ (f, J_f) \\ J_V \\ (f, J_f^T) \\ J_f^T \\ J_f^T \\ (f, J_f^T) \\ J_f^T \\ (f, J_f^T) \\ \nabla \times f \\ (f, J_f^T \\ (f, V \\ r) \\ \nabla \cdot f \\ (\nabla \cdot f) \\ (\nabla \cdot f \\ (\nabla \cdot f) \\ (\nabla \cdot f \\ (\nabla \cdot f) \\ (\nabla \cdot f \\ \nabla \cdot f \\ (\nabla \cdot f \\ (\nabla \cdot f) \\ (\nabla \cdot f) \\ (\nabla \cdot f \\ (\nabla \cdot f) \\ (\nabla \cdot f) \\ (\nabla \cdot f) \\ (\nabla \cdot f \\ (\nabla \cdot f) \\ (\nabla \cdot f) \\ (\nabla \cdot f) \\ (\nabla \cdot f \\ (\nabla \cdot f) \\ (\nabla \cdot f$	$\begin{array}{cccc} (\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\ (\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}) \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\ \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\ \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} $	X, F/R X, F/R X, F/ X, F X, F/R X, F/R X, F X, F X, R X, F X, F X, F X, F X, F	A A A A A	X X X X X X X X X X X X X X X X

DiffSharp

Matrix operations http://diffsharp.github.io/DiffSharp/api-overview.html

High-performance OpenBLAS backend by default, currently working on a CUDA-based GPU backend

Support for 64- and 32-bit floats (faster on many systems)

Benchmarking tool
http://diffsharp.github.io/DiffSharp/benchmarks.html

A growing collection of tutorials: gradient-based optimization algorithms, clustering, Hamiltonian Monte Carlo, neural networks, inverse kinematics

Нуре

http://hypelib.github.io/Hype/

An experimental library for "compositional machine learning and **hype**rparameter optimization", built on DiffSharp

A robust optimization core

- highly configurable functional modules
- SGD, conjugate gradient, Nesterov, AdaGrad, RMSProp, Newton's method
- Use nested AD for gradient-based hyperparameter optimization (Maclaurin et al., 2015)

Hype Extracts from Hype neural network code, freely use F# and higher-order functions, don't think about gradients or backpropagation

https://github.com/hypelib/Hype/blob/master/src/Hype/Neural.fs

```
1: // Use mixed mode nested AD
2: open DiffSharp.AD.Float32
4: type FeedForward() =
    inherit Laver()
       override n.Run(x:DM) = Array.fold Layer.run x layers
9: type GRU(inputs:int, memcells:int) =
      inherit Layer()
      // RNN many-to-many execution as "map", DM -> DM
       override l.Run (x:DM) =
           x |> DM.mapCols
                   (fun x ->
                       let z = sigmoid(1.Wxz * x + 1.Whz * 1.h + 1.bz)
                       let r = sigmoid(1.Wxr * x + 1.Whr * 1.h + 1.br)
                       let h' = tanh(1.Wxh * x + 1.Whh * (1.h .* r))
                       1.h <- (1.f - z) .* h' + z .* 1.h
                       1.h)
```

Hype Derivatives are instantiated within the optimization code

```
1: type Method
       | CG -> // Conjugate gradient
           fun w f g p gradclip ->
               let v', g' = grad' f w // gradient
               let g' = gradclip g'
              let y = g' - g
               let b = (g' * y) / (p * y)
               let p' = -g' + b * p
               v', g', p'
       | NewtonCG -> // Newton conjugate gradient
           fun w f p gradclip ->
               let v', g' = grad' f w // gradient
              let g' = gradclip g'
               let hv = hessianv f w p // Hessian-vector product
               let b = (g' * hv) / (p * hv)
              let p' = -g' + b * p
               v'. g'. p'
       I Newton -> // Newton's method
           fun w f _ _ gradclip ->
               let v', g', h' = gradhessian' f w // gradient, Hessian
               let g' = gradclip g'
               let p' = -DM.solveSymmetric h' g'
               v', g', p'
```

Hamiltonian Monte Carlo with DiffSharp

Try it on your system: http://diffsharp.github.io/DiffSharp/ examples-hamiltonianmontecarlo.html

```
1: let leapFrog (u:DV->D) (k:DV->D) (d:D) steps (x0, p0) =
      let hd = d / 2.
   [1..steps]
   >> List.fold (fun (x, p) _ ->
    let p' = p - hd * grad u x
          let x' = x + d * grad k p'
          x', p' - hd * grad u x') (x0, p0)
9: let hmc n hdelta hsteps (x0:DV) (f:DV->D) =
       let u x = -log (f x) // potential energy
      let k p = (p * p) / D 2. // kinetic energy
   let hamilton x p = u x + k p
   let x = ref x0
      [|for i in 1..n do
           let p = DV.init x0.Length (fun -> rndn())
           let x', p' = leapFrog u k hdelta hsteps (|x, p\rangle)
           if rnd() < float (exp ((hamilton !x p) - (hamilton x' p'))) then x := x'
```

Thank You!

References

- Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (Submitted) Automatic differentiation in machine learning: a survey [arXiv:1502.05767]
- Baydin AG, Pearlmutter BA, Siskind JM (Submitted) DiffSharp: automatic differentiation library [arXiv:1511.07727]
- Carpenter B, Hoffman MD, Brubaker M, Lee D, Li P, Betancourt M (2015) The Stan math library: reverse-mode automatic differentiation in C++. [arXiv:1509.07164]
- Griewank A, Walther A (2008) Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Society for Industrial and Applied Mathematics, Philadelphia [DOI 10.1137/1.9780898717761]
- Maclaurin D, David D, Adams RP (2015) Gradient-based Hyperparameter Optimization through Reversible Learning [arXiv:1502.03492]
- Manzyuk O, Pearlmutter BA, Radul AA, Rush DR, Siskind JM (2012) Confusion of tagged perturbations in forward automatic differentiation of higher-order functions [arXiv:1211.4892]
- Pearlmutter BA, Siskind JM (2008) Reverse-mode AD in a functional framework: Lambda the ultimate backpropagator. ACM TOPLAS 30(2):7 [DOI 10.1145/1330017.1330018]
- Siskind JM, Pearlmutter BA (2008) Nesting forward-mode AD in a functional framework. Higher Order and Symbolic Computation 21(4):361–76 [DOI 10.1007/s10990-008-9037-1]
- Syme D (2006) Leveraging.NET meta-programming components from F#: integrated queries and interoperable heterogeneous execution. 2006 Workshop on ML.
 ACM.
- Wengert R (1964) A simple automatic derivative evaluation program. Communications of the ACM 7:463-4