Differentiable Programming

Atihm Gines Baydin

National University of Ireland Maynooth

(Based on joint work with Barak Pearlmutter)

Microsoft Research Cambridge, February 1, 2016

@

Hamilton Institute

Maynooth
University
National University
of Ireland Maynooth

Deep learning layouts

Neural network models are assembled from building blocks

and trained with backpropagation

1/40

Deep learning layouts

Neural network models are assembled from building blocks

and trained with backpropagation

Traditional:
m Feedforward
m Convolutional
m Recurrent

> >our

1/40

Deep learning layouts
Newer additions:

Make algorithmic elements continuous and differentiable
— enables use in deep learning

I S SO
NTM on copy task

(Graves et al. 2014)

m Neural Turing Machine (Graves et al., 2014)
— can infer algorithms: copy, sort, recall
m Stack-augmented RNN (Joulin & Mikolov, 2015)
m End-to-end memory network (Sukhbaatar et al., 2015)
m Stack, queue, deque (Grefenstette et al., 2015)
m Discrete interfaces (Zaremba & Sutskever, 2015)

2/40

Deep learning layouts

Stacking of many layers, trained through backpropagation

AlexNet, 8 layers (ILSVRC 2012)

ResNet, 152 layers (deep residual learning) (ILSVRC 2015)
T 0 A 000 A0 A0 1A 0 00 001 0 00 100 100 0 A0 0 00 1 0 A0 A0 1 0 1

(He, Zhang, Ren, Sun. “Deep Residual Learning for Image Recognition.” 2015. arXiv:1512.03385)

3/40

The bigger picture

One way of viewing deep learning systems is
“differentiable functional programming”

Two main characteristics:

m Differentiability A’a\\\
— optimization ' -

4
m Chained function composition
— successive g A B
transformations B
—» successive levels of f:B—=
distributed representations fog:A=C

(Bengio 2013)
— the chain rule of calculus
propagates derivatives

4/40

The bigger picture

In a functional interpretation
m Weight-tying or multiple applications of the same neuron
(e.g., ConvNets and RNNs) resemble function abstraction
m Structural patterns of composition resemble
higher-order functions (e.g., map, fold, unfold, zip)

Output
sequence

Hidden
units

Input
sequence

fold unfold

(e.g., sentiment analysis) (e.g., image captioning)
5/40

The bigger picture

Even when you have complex compositions,
differentiability ensures that they can be trained end-to-end
with backpropagation

Viion _Language | |A group of people
Deep CNN Generating shopping at an
RNN outdoor market.

S >
| @ There are many
vegetables at the

fruit stand.

(Vinyals, Toshev, Bengio, Erhan. “Show and tell: a neural image caption generator.” 2014. arXiv:1411.4555)

6/40

The bigger picture

These insights clearly put into words in
Christopher Olah’s blog post (September 3, 2015)
http://colah.github.io/posts/2015-09-NN-Types-FP/

“The field does not (yet) have a unifying insight or narrative”

and reiterated in David Dalrymple’s essay (January 2016)
http://edge.org/response-detail/26794

“The most natural playground ... would be a new language that can
run back-propagation directly on functional programs.”

7/40

http://colah.github.io/posts/2015-09-NN-Types-FP/
http://edge.org/response-detail/26794

In this talk

Vision:
Functional languages with
m deeply embedded,
m general-purpose
differentiation capability, i.e., differentiable programming

8/40

In this talk

Vision:
Functional languages with
m deeply embedded,
m general-purpose
differentiation capability, i.e., differentiable programming

Automatic (algorithmic) differentiation (AD) in a functional
framework is a manifestation of this vision.

8/40

In this talk

| will talk about:

m Mainstream frameworks
m What AD research can contribute
m My ongoing work

9/40

Mainstream Frameworks

Frameworks

“Theano-like”

m Fine-grained

m Define computational graphs in a
symbolic way

m Graph analysis and optimizations

Examples:
m Theano
m Computation Graph Toolkit (CGT)
m TensorFlow

m Computational Network Toolkit
(CNTK)

0: Softmax
P Plus
T: Times B“: Weight

2

W' Weight s': Sigmoid

P1Y: Plus
T%: Times B": Weight
W™ Weight X: Input

(Kenneth Tran. “Evaluation of Deep Learning Toolkits"

https://github. con/zer0n/deepframeworks)

10/40

https://github.com/zer0n/deepframeworks

Frameworks

“Torch-like”

m Coarse-grained

m Build models by combining
pre-specified modules

m Each module is manually
implemented, hand-tuned
Examples:
m Torch7
m Caffe

11740

Frameworks

Common in both:

m Define models using
the framework’s (constrained) symbolic language

m The framework handles backpropagation
— you don't have to code derivatives
(unless adding new modules)

m Because derivatives are “automatic”, some call it
“autodiff” or “automatic differentiation”

12/40

Frameworks

Common in both:

m Define models using
the framework’s (constrained) symbolic language

m The framework handles backpropagation
— you don't have to code derivatives
(unless adding new modules)

m Because derivatives are “automatic”, some call it
“autodiff” or “automatic differentiation”

This is NOT the traditional meaning of automatic differentiation
(AD) (Griewank & Walther, 2008)

12/40

Frameworks

Common in both:

m Define models using
the framework’s (constrained) symbolic language

m The framework handles backpropagation
— you don't have to code derivatives
(unless adding new modules)

m Because derivatives are “automatic”, some call it
“autodiff” or “automatic differentiation”

This is NOT the traditional meaning of automatic differentiation
(AD) (Griewank & Walther, 2008)

Because “automatic” is a generic (and bad) term,
algorithmic differentiation is a better name

12/40

“But, how is AD different from Theano?”

13/40

“But, how is AD different from Theano?”

In Theano
m express all math relations using symbolic placeholders
m use a mini-language with very limited control flow
(e.g. scan)
m end up designing a symbolic graph for your algorithm
m Theano optimizes it

val=10 TensorType(int8, scalar)

PensorType(int8, scalar)

0 TensorType(float64, vector) [| TensorType(int8. (True)

Elemwise{pow no_inplace}
T TensorType(float64, vector)
Elemwise{add,no_inplace}

TensorType(float64, vector)

‘ensorType(float64, vector)

TensorTypefloat64, vector)

13/40

“But, how is AD different from Theano?”

Theano gives you automatic derivatives

m Transforms your graph into a derivative graph
m Applies optimizations
m Identical subgraph elimination
m Simplifications
m Stability improvements
(http://deeplearning.net/software/theano/
optimizations.html)

m Compiles to a highly optimized form

14/40

http://deeplearning.net/software/theano/optimizations.html
http://deeplearning.net/software/theano/optimizations.html

“But, how is AD different from Theano?”
You are limited to symbolic graph building, with the mini-language

15/40

“But, how is AD different from Theano?”
You are limited to symbolic graph building, with the mini-language

For example, instead of this in pure Python (for AX):

result =1
for i in xrange(k):
result = result * A

15/40

“But, how is AD different from Theano?”

You are limited to symbolic graph building, with the mini-language

For example, instead of this in pure Python (for AX):

result =1
for i in xrange(k):
result = result * A

You build this symbolic graph:

import theano
import theano.tensor as T

k = T.iscalar("k")
A = T.vector("A")

Symbolic description of a Loop

result, updates = theano.scan(fn=1lambda prior_result, A: prior_result * A,
outputs_info=T.ones_like(A),
non_sequences=A,
n_steps=k)

final_result = result[-1]

compiled function that returns A**k
power = theano.function(inputs=[A,k], outputs=final_result, updates=updates)

15/40

“But, how is AD different from Theano?”

AD allows you to just fully use your host language
and gives you exact and efficient derivatives

16/40

https://github.com/HIPS/autograd

“But, how is AD different from Theano?”

AD allows you to just fully use your host language
and gives you exact and efficient derivatives

So, you just do this:

result =1
for i in xrange(k):
result = result * A

16/40

https://github.com/HIPS/autograd

“But, how is AD different from Theano?”

AD allows you to just fully use your host language
and gives you exact and efficient derivatives

So, you just do this:

result =1
for i in xrange(k):
result = result * A

For Python, autograd
https://github.com/HIPS/autograd

Harvard Intelligent Probabilistic Systems Group
(Dougal Maclaurin, David Duvenaud, Ryan P Adams. “Autograd:
effortless gradients in Numpy.” 2015)

16/40

https://github.com/HIPS/autograd

Here is the difference

m AD does not use symbolic graphs

m Gives numeric code that computes
the function AND its derivatives at a given point

f(a, b): f’(a, a’, b, b?):
c=axb __ (c, ¢c’) = (axb, a’+b + ax*b’)
d = sin ¢ (d, d’) = (sin c, ¢’ * cos c)
return d return (d, d’)

m Derivatives propagated at the elementary operation level,
as a side effect, at the same time when the function itself is
computed
— Prevents the “expression swell” of symbolic derivatives

m Full expressive capability of the host language
— Including conditionals, looping, branching

17/40

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

18/40

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

£(2, 3)

18/40

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

£(2, 3)

a=2

b=23
c=ax*xb==6

d = log c = 1.791

return 1.791

(primal)

18/40

Function evaluation traces

All numeric evaluations are sequences of elementary operations:

a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

£(2, 3)

a=2
b=23
c=ax*xbs=
d =1log c =

return 1.791

(primal)

1.791

a =2

a’ =1

b =3

b> =0

c =ax*xb=6

c’> =a’> xb+ax*xb’

d =1log c=1.791
d’> =c>*x (1 /c) =0.5
return 1.791, 0.5

(tangent)

18/40

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b): a=2 a 2
c=ax*xb a’ =1
if ¢ >0 b=3 b =3
d = log c b’ =0
else c=ax*xb=26 c =ax*xb=6
d = sin ¢ c’=a’>*xb+axb” =3
return d d =1log c =1.791 d =1log c=1.791
d’> =c>*x (1 /c) =0.5
£(2, 3) return 1.791 return 1.791, 0.5
(primal) (tangent)

i.e., a Jacobian-vector product J¢ (1,0)|; 5) = %f(a,b)\(2 3) = 0.5

This is called the forward (tangent) mode of AD

18/40

Function evaluation traces
f(a, b):
c=ax*xb
if ¢ >0
d = log c
else
d = sin c
return d

£(2, 3)

19/40

Function evaluation traces

f(a, b): a=2
c=ax*xhb b=23
if ¢ >0 c=a*xb=26
d = log c d =1log c =1.791
else return 1.791
d = sin c
return d (primal)

£(2, 3)

19/40

Function evaluation traces

f(a, b): a=2
c=axbhb b=3
if ¢ >0 c=ax*xb=
d = log c d = log c =
else return 1.791
d = sin c
return d (primal)
£(2, 3)

6
1.791

a =2

b =3

c =ax*xb=26

d =logc=1.791

d’ =1

c’=d> * (1 / c) =0.166
b?> = ¢’ *x a =0.333

a’ =c’” *xb=20.5
return 1.791, 0.5, 0.333

(adjoint)

19/40

Function evaluation traces

f(a, b): a=2 a =2
c=ax*xb b =23 b =3
if ¢ >0 c=a*xb=6 c =ax*xb=26
d = log c d = log c = 1.791 d =logc=1.791
else return 1.791 d’> =1
d = sin ¢ . c>=d> x (1 / c)=0.166
return d (p"mal) b’ = ¢’ *x a=0.333
a’ =c’” *xb=20.5
f(2, 3) return 1.791, 0.5, 0.333

(adjoint)

i.e., a transposed Jacobian-vector product
JZ,- (1)‘(273) = Vf|(273) = (0.5, 0333)

This is called the reverse (adjoint) mode of AD

Backpropagation is just a special case of the reverse mode:
code your neural network objective computation, apply reverse AD

19/40

Torch-autograd

There are signs that this type of generalized AD
will become mainstream in machine learning

20/40

https://blog.twitter.com/2015/autograd-for-torch

Torch-autograd

There are signs that this type of generalized AD
will become mainstream in machine learning

A very recent development (November 2015)
Torch-autograd by Twitter Cortex

(inspired by Python autograd)
https://blog.twitter.com/2015/autograd-for-torch

“autograd has dramatically sped up our model building ...
extremely easy to try and test out new ideas”

20/40

https://blog.twitter.com/2015/autograd-for-torch

A cool functional DSL for Torch and Caffe

A side note about the functional interpretation deep learning:

dnngraph by Andrew Tulloch
http://ajtulloch.github.io/dnngraph/

Specify neural network layouts in Haskell,
it gives you Torch and Caffe scripts

21/40

http://ajtulloch.github.io/dnngraph/

What Can AD Research Contribute?

The ambition

m Deeply embedded AD

m Derivatives (forward and/or reverse)
as part of the language infrastructure

m Rich API of differentiation operations
as higher-order functions

m High-performance matrix operations for deep learning
(GPU support, model and data parallelism)

22/40

The ambition

m Deeply embedded AD

m Derivatives (forward and/or reverse)
as part of the language infrastructure

m Rich API of differentiation operations
as higher-order functions

m High-performance matrix operations for deep learning
(GPU support, model and data parallelism)

The embodiment of the “differentiable programming” paradigm

22/40

The ambition

m Deeply embedded AD

m Derivatives (forward and/or reverse)
as part of the language infrastructure

m Rich API of differentiation operations
as higher-order functions

m High-performance matrix operations for deep learning
(GPU support, model and data parallelism)

The embodiment of the “differentiable programming” paradigm

| have been working on these issues with Barak Pearlmutter
and created DiffSharp (later in the talk)

22/40

AD in a functional framework

AD has been around since the 1960s
(Wengert, 1964; Speelpenning, 1980; Griewank, 1989)

The foundations for AD in a functional framework
(Siskind and Pearlmutter, 2008; Pearlmutter and Siskind, 2008)

With research implementations
m R6RS-AD
https://github.com/qobi/R6RS-AD

m Stalingrad
http://www.bcl.hamilton.ie/"qobi/stalingrad/

m Alexey Radul’'s DVL
https://github.com/axch/dysvunctional-language

m Recently, my DiffSharp library
http://diffsharp.github.io/DiffSharp/

23/40

https://github.com/qobi/R6RS-AD
http://www.bcl.hamilton.ie/~qobi/stalingrad/
https://github.com/axch/dysvunctional-language
http://diffsharp.github.io/DiffSharp/

AD in a functional framework

“Generalized AD as a first-class function in an augmented
A-calculus” (Pearlmutter and Siskind, 2008)

Forward, reverse, and any nested combination thereof,
instantiated according to usage scenario

Nested lambda expressions with free-variable references

min (Ax . (f x) + min (\y . g x y))
(min: gradient descent)

24/40

AD in a functional framework

“Generalized AD as a first-class function in an augmented
A-calculus” (Pearlmutter and Siskind, 2008)

Forward, reverse, and any nested combination thereof,
instantiated according to usage scenario

Nested lambda expressions with free-variable references

min (Ax . (f x) + min (\y . g x y))
(min: gradient descent)

Must handle “perturbation confusion” (Manzyuk et al., 2012)
Dx.xx(D(\y.x+y)M)1

A (4,
dx dy y y=1

2

=1

x=1

24/40

Tricks of the trade

Many methods from AD research

m Hessian-vector products (Pearlmutter, 1994)
Tape reduction and elimination (Naumann, 2004)
Context-aware source-to-source transformation (Utke, 2004)

Utilizing sparsity by matrix coloring (Gebremedhin et al.,
2013)

m Reverse AD checkpointing (Dauvergne & Hascoét, 2006)

CHECKPOINTING
C

U ShkSnp
@

25/40

My Ongoing Work

DiffSharp

http://diffsharp.github.io/DiffSharp/

m AD with linear algebra primitives
m arbitrary nesting of forward/reverse AD
m a comprehensive higher-order API

m gradients, Hessians, Jacobians, directional
derivatives, matrix-free Hessian- and
Jacobian-vector products

26/40

http://diffsharp.github.io/DiffSharp/

DiffSharp

http://diffsharp.github.io/DiffSharp/

m AD with linear algebra primitives
m arbitrary nesting of forward/reverse AD
m a comprehensive higher-order API

m gradients, Hessians, Jacobians, directional
derivatives, matrix-free Hessian- and
Jacobian-vector products

Implemented in F#

— the best tool for this job

— cross-platform (Linux, Mac 0S, Windows)

— easy deployment with nuget

— the immense .NET user base of C# and F# users

— implicit quotations in F# 4.0 is a “killer feature” for deeply
embedding transformation-based AD

26/40

http://diffsharp.github.io/DiffSharp/

DiffSharp

Higher-order differentiation API

Op. Value Type signature AD Num. Sym.
f:R—=>R diff (R—-R)—>R—R X, F A X
diff’ f, £ (]P —+R) >R — (RxR) X, F A X
diff2 o) — R X,F A X
diff2’ f " X, F A X
diff2?? TN —R— (RxRxR) X,F A X
diffn Fm X, F X
diffn’ (f £y 2 = (R x R) X, F X
fiR" R grad X,R A X
grad’ (f, Vf) — (]R x R™) X,R A X
gradv SR 5 R X,F A
gradv’ (f, vf v) —R" — (R xR) X, F A
hessian H; g X,R-F A X
hessian’ (f. Hy)) = R™ — (R x R*m) X,R-F A X
hessianv Hyv) = R" - R" - R X,F-R A
hessianv’ (f Hyv) R — (R x R™) X, F-R A
gradhessian (Vf, Hy) x RXm) X,R-F A X
gradhessian’ (f, V[, Hy) — R™ — (R x R™ x R"Xn) X,R-F A X
gradhessianv (Vf-v,H;v) —R" = (R x R") X, F-R A
gradhessianv’ (f,Vf-v,Hsv) —R" — (R x R x R") X,F-R A
laplacian tr(Hy) SR X,R-F A X
laplacian’ (f, cr(Hf)) R™ — (R x R) X,R-F A X
f:R” —R™ jacobian Je — R® — R™X" X, F/R A X
jacobian’ (£,35) — R™ — (R™ x Rmxn) X,F/R A X
Jjacobianv Jev —R™ 5 R" 5 R™ X,F A
jacobianv’ (F,J¢v) R — R"™ - R" - (R™ x R™) X,F A
jacobianT a7 (R™ — R™) — R — R?Xm X, F/R A X
jacobianT’ (£,97 — R™) = R" - (R™ x R"*™) X, F/R A X
jacobianTv Ity m) R® — R™ — R" X, R
jacobianTv’ (£,]v) 3 ™) R" = R™ — (R™ x R™) X, R
jacobianTv’’ (f,J7(-) (R" = R™) — R" - (R™ x (R™ — R™)) X, R
curl Vxf R X,F A X
curl’ (£,V x f) X,F A X
div -f X, F A X
div’ (£, V-f) X,F A X
curldiv (Vxf£,V-f) X,F A X
curldiv’ £,V xf,V-f) (B SR)~> X, F A X

27/40

DiffSharp

Matrix operations
http://diffsharp.github.io/DiffSharp/api-overview.html

High-performance OpenBLAS backend by default, work on a
CUDA-based GPU backend underway

Support for 64- and 32-bit floats (faster on many systems)

Benchmarking tool
http://diffsharp.github.io/DiffSharp/benchmarks.html

A growing collection of tutorials: gradient-based optimization
algorithms, clustering, Hamiltonian Monte Carlo, neural networks,
inverse kinematics

28/40

http://diffsharp.github.io/DiffSharp/api-overview.html
http://diffsharp.github.io/DiffSharp/benchmarks.html

Hype

http://hypelib.github.io/Hype/

An experimental library for “compositional machine learning
and hyperparameter optimization”, built on DiffSharp

A robust optimization core
m highly configurable functional modules

m SGD, conjugate gradient, Nesterov, AdaGrad, RMSProp,
Newton’s method

m Use nested AD for gradient-based hyperparameter
optimization (Maclaurin et al., 2015)

Researching the differentiable functional programming paradigm
for machine learning

29/40

http://hypelib.github.io/Hype/

Hype

Extracts from Hype neural network code,

use higher-order functions, don't think about gradients or
backpropagation
https://github.com/hypelib/Hype/blob/master/src/Hype/Neural.fs

open DiffSharp.AD.Float32

type O
inherit Layer()

override n.Run(x:DM) = Array.fold Layer.run x layers

type (inputs , memcells)
inherit Layer()

1:
28
4:
5:
6:
7:
8:
9:

override 1.Run (x)
X DM.mapCols
(fun x ->
let z = sigmoid(l.Wxz * x + 1.Whz
let r sigmoid(1l.Wxr X 1.Whr
let h' tanh(1.Wxh X 1 .wWhh (1.h
1.h .f - z) h* z 1.h
1.h)

30/40

https://github.com/hypelib/Hype/blob/master/src/Hype/Neural.fs

Hype

Extracts from Hype optimization code
https://github.com/hypelib/Hype/blob/master/src/Hype/Optimize.fs

Optimization and training as higher-order functions
— works with any function that you want to describe your data
— can be composed, curried, nested

static member Minimize (f:DV->D, w0:DV)
Optimize.Minimize (f, w0, Params.Default)

static member Train (f:DV->DV->D, w0:DV, d:Dataset)
Optimize.Train ((fun w v -> toDV [f w v]), w0, d)

31/40

https://github.com/hypelib/Hype/blob/master/src/Hype/Optimize.fs

Hype
User doesn't need to think about derivatives
They are instantiated within the optimization code

. type Method
| CG ->
fun w f g p gradclip ->
let v', g' grad' f w
let g’ gradclip g’
let y ! 4
let b
let p'
v', g',
| NewtonCG ->
fun w f _ p gradclip ->
let v', g' grad' f w
let g’ gradclip g’
let hv = hessianv f w p
let b (g’ hv) (p hv)
let p' b *p
v, g, p’
| Newton ->
funw f _ _ gradclip ->
let v', g', h" gradhessian' f w
let g’ gradclip g'
let p* DM.solveSymmetric h* g°
v, g', p'

Hype

But they can use derivatives within their models, if needed
— input sensitivities

— complex objective functions

— adaptive PID controllers

— integrating differential equations

let leapFrog (u:DV->D) (k:DV->D) (d:D) steps (x0, p0)
let hd = d / 2.
[1..steps]
fold (fun (x, p) _ ->
let p' p - hd * grad u x
let x' x +d * grad k p'
x', p' hd * grad u x') (x0, p0)

1:
2:
BH
4:
55
6:
7:

00

33/40

Hype

But they can use derivatives within their models, if needed
— input sensitivities

— complex objective functions

— adaptive PID controllers

— integrating differential equations

let leapFrog (u:DV->D) (k:DV->D) (d:D) steps (x0, p0)
let hd = d / 2.
[1..steps]
fold (fun (x, p) _ ->
let p' p - hd * grad u x
let x' x +d * grad k p'
x', p' hd * grad u x') (x0, p0)

1:
2:
BH
4:
55
6:
7:

00

Thanks to nested generalized AD

m you can optimize components that are internally using
differentiation
m resulting higher-order derivatives propagate via

forward/reverse AD as needed
33/40

Hype

We also provide a Torch-like API for neural networks

let n FeedForward()
n.Add(Linear(dim, 100))
Add(LSTM(100, 400))
Add(LSTM(400, 100))
Add(Linear (100, dim))
Add(relLU)

n
n
n
n

34/40

Hype

We also provide a Torch-like API for neural networks

let n FeedForward()
n.Add(Linear(dim, 100))

Add(LSTM(100, 400))
Add(LSTM(400, 100))
Add(Linear (100, dim))

n
n
n
n.Add(reLU)

A cool thing: thanks to AD, we can freely code
any F# function as a layer, it just works

n.Add(fun m ->m DM.mapCols softmax)

let dropout (x:DM)
X (Rnd.UniformDM(x.Cols, x.Rows) DM.Round) 2.f

n.Add(dropout)

34/40

Hype

http://hypelib.github.io/Hype/feedforwardnets.html

We also have some nice additions for F# interactive

35/40

http://hypelib.github.io/Hype/feedforwardnets.html

Roadmap

m Transformation-based, context-aware AD
F# quotations (Syme, 2006) give us a direct path for deeply
embedding AD

m Currently experimenting with GPU backends
(CUDA, ArrayFire, Magma)

m Generalizing to tensors
(for elegant implementations of, e.g., ConvNets)

36/40

Roadmap

| would like to see this work integrated with tools in other
languages (C++, Python) and frameworks (Torch, CNTK)

37/40

Conclusion

Conclusion

An exciting research area at the intersection of
m programming languages
m functional programming
m machine learning

38/40

Beyond deep learning

Applications in probabilistic programming

(Wingate, Goodman, Stuhimidiller, Siskind. “Nonstandard interpretations of probabilistic programs for efficient inference.”

2011)

m Hamiltonian Monte Carlo
http://diffsharp.github.io/DiffSharp/
examples-hamiltonianmontecarlo.html

m No-U-Turn sampler

m Gradient-based maximum a posteriori estimates

For example, Stan is built on AD
http://mc-stan.org/
(Carpenter et al., 2015)

39/40

http://diffsharp.github.io/DiffSharp/examples-hamiltonianmontecarlo.html
http://diffsharp.github.io/DiffSharp/examples-hamiltonianmontecarlo.html
http://mc-stan.org/

Other areas

Any work in AD remains applicable to the
traditional application domains of AD in industry and academia

(Corliss et al., 2002)

m Computational fluid
dynamics

m Atmospheric chemistry

m Engineering design
optimization

m Computational finance

40/40

Thank You!

References

Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (Submitted) Automatic differentiation in machine leaming: a survey [arXiv:1502.05767]

Baydin AG, Pearlmutter BA, Siskind JM i DiffSharp: ic dif iation library [arXiv:1511.07727]

Bengio Y (2013) Deep learning of representations: looking forward. Statistical Language and Speech Processing. LNCS 7978:1-37 [arXiv:1404.7456]

Graves A, Wayne G, Danihelka | (2014) Neural Turing machines. [arXiv:1410.5401]

Grefenstette E, Hermann KM, Suleyman M, Blunsom, P 2015) Learning to transduce with unbounded memory. [arXiv:1506.02516]

Griewank A, Walther A (2008) Evaluating Derivati iples and of Algorithmic Di iation. Society for Industrial and Applied Mathematics,
Philadelphia [DOI 10.1137/1.9780898717761]

He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. [arXiv:1512.03385]

Joulin A, Mikolov T (2015) Inferring algorithmic patterns with stack-augmented recurrent nets. [arXiv:1503.01007]

+ Maclaurin D, David D, Adams RP (2015) Gradient-based F Optimi through Learning [arXiv:1502.03492]

+ Manzyuk O, Pearlmutter BA, Radul AA, Rush DR, Siskind JM (2012) Confusion of tagged per { in forward ic dif iation of higher-order functions
[arXiv:1211.4892]

+ Pearlmutter BA, Siskind JM (2008) R de ADina Lambda the ultimate backpropagator. ACM TOPLAS 30(2):7 [DOI
10.1145/1330017.1330018]

+ Siskind JM, Pearlmutter BA (2008) Nesting forward-mode AD in a Higher Order and Symbolic Computation 21(4):361-76 [DOI

10.1007/510990-008-9037-1]
Sukhbaatar S, Szlam A, Weston J, Fergus R (2015) Weakly supervised memory networks. [arXiv:1503.08895]

Syme D (2006) Leveraging .NET met from F#: queries and i ion. 2006 on ML.

mea\s 0, Toshev A, Bengio S, Erhan D (2014) Show and tell: a neural image caption generator. [arXiv:1411.4555]

Wengert R (1964) A simple derivative ion program. C: ications of the ACM 7:463-4

Zaremba W, Sutskever | (2015) Reinforcement learning neural Turing machines. [arXiv:1505.00521]

