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Abstract

We develop a machine learning approach to detect and discriminate elephants

from other species, and to recognise important behaviours such as running and

rumbling, based only on seismic data generated by the animals. We demonstrate

our approach using data acquired in the Kenyan savanna, consisting of 8000 h

seismic recordings and 250 k camera trap pictures. Our classifiers, different con-

volutional neural networks trained on seismograms and spectrograms, achieved

80%–90% balanced accuracy in detecting elephants up to 100 m away, and over

90% balanced accuracy in recognising running and rumbling behaviours from

the seismic data. We release the dataset used in this study: SeisSavanna represents

a unique collection of seismic signals with the associated wildlife species and

behaviour. Our results suggest that seismic data offer substantial benefits for

monitoring wildlife, and we propose to further develop our methods using dense

arrays that could result in a seismic shift for wildlife monitoring.

Introduction

The ecosystems on our planet are facing an existential crisis,

which authors increasingly call the sixth extinction (Bar-

nosky et al., 2004; Ceballos et al., 2020). In mere decades,

hundreds of species have become either endangered or

extinct because of human activity, either directly through

hunting, or indirectly through side effects such as ocean

acidification and spread of invasive species (Ceballos et al.,

2020). For instance, about 90 amphibian species have disap-

peared in the last few decades, with a total of about 500

species on the decline (Scheele et al., 2019), or worldwide

declines of coral reefs that support some of the most

diverse ecosystems in otherwise barren tropical waters (Bell-

wood et al., 2004). Mammals, too, are adversely impacted

and increasingly jeopardised, and many hold the unenviable

position of being among the most famous endangered

species, such as giant pandas, tigers or blue whales.

Of particular interest to us are African elephants Lox-

odonta africana, who are poached for their ivory that is

falsely believed to have healing powers and reaches astro-

nomical prices on the black market (Wasser et al., 2008),

but are also killed because of increasing human–elephant
conflicts. Populations of African elephants have generally

been in decline during the 1970s and 1980s (Douglas-

Hamilton, 1987). After a general recovery until the mid-

2000s thanks to new laws and conservation efforts (Chase

et al., 2016), the numbers are now once again on the

decline and the species is now classified as endangered

following its split with Loxodonta cyclotis (Gobush et al.,

2021), with about 415 000 individuals estimated in 2016

(Thouless et al., 2016).
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A crucial aspect of elephant conservation is real-time

monitoring of the animals and their behaviour, for

instance to understand if a herd is getting dangerously

close to a human settlement, or if the animals start run-

ning, which could signify an attack by poachers (Suku-

mar, 2003). There are several approaches currently

employed to monitor elephants that each have strengths

and weaknesses. One possibility is to fit individual GPS

collars to animals (Blake et al., 2001; Galanti et al., 2000;

Ngene et al., 2010), which allows tracking in real-time,

but unfortunately this is very time- and labour-intensive

as it requires deploying a specialised team to tranquilise

the elephant and fit the collar. A cheaper and commonly

used option is to deploy camera traps, which trigger

through an infrared motion sensor (Kays et al., 2009;

Smit et al., 2019). A drawback of that method is the lim-

ited detection range of the infrared sensor, typically a

field-of-view of roughly 60° and a viewing range of about

30 m (Randler & Kalb, 2018) in open terrain. The sensor

is further influenced by environmental conditions such as

temperature, and limited visibility due to vegetation and

topography. One could perhaps deploy continuously

recording cameras that do not have triggering mecha-

nisms, but then again one runs into difficulties with

obstacles to the field of view, massive data volumes and

expensive computations, which are all drawbacks for real-

time monitoring. There are also promising new airborne

methods emerging for real-time monitoring by using

drones (Mangewa et al., 2019), but they also have limita-

tions such as field of view obstruction and environmental

disruption due to noise.

In this study, we investigated the possibility of using

seismometers and machine learning to distinguish ele-

phants from other species, as well as classify their beha-

viour, from the ground motion resulting from their

footsteps. Traditionally, seismic recordings belong to the

realm of geophysics and seismology, where they are used

to determine earthquake properties and the structure of

the planet (Dziewonski et al., 1977; Hosseini et al., 2020;

Szenicer et al., 2020). Additionally, seismic recordings

have also been employed for footfall detection in humans

(Clemente et al., 2019) and they seem a natural candidate

for detecting much larger animals such as elephants. Mor-

timer et al. (2018) performed modelling with limited

recorded data that suggested that, depending on beha-

viour and geology, seismic signals from elephants can be

detected at distances up to hundreds of metres or even

kilometres, and thus potentially have much larger ranges

than camera traps do. In addition, seismometers are not

limited by obstacles in the line of sight, nor do they have

an azimuthal range limit. Finally, because of their low

data volume and power requirements, seismic stations are

routinely deployed for months at a time without the need

for maintenance or inspection, and therefore can be good

candidates for monitoring in remote locations. All of the

above suggest that using seismic data can be a promising

approach to real-time monitoring, with potentially signifi-

cant benefits over existing methods. Some work has been

done in this direction, for example Wood et al. (2005)

employed geophones and seismic data to recognise ele-

phants, but on a limited scale, with only a few dozen dat-

apoints, and handcrafted features extracted from the

seismic data. Crucially, they only had one seismic station,

and therefore could not investigate the generality of their

method. Sugumar and Jayaparvathy (2013) also investi-

gated using seismic data for elephant classification, but

only tested their method on a few dozen simulated data-

points. Lamb et al. (2021) recently deployed Raspberry

Shake sensors in South Africa to assess their viability for

monitoring seismic vocalizations and locomotion of ele-

phants, but not designed algorithms to detect and classify

the animals. All these results are encouraging, and in this

study, we take this idea to the next step, with large

amounts of field data consisting of seismic and camera-

trap recordings, and a fully data-driven automated deep

learning approach.

Deep learning has pervaded many aspects of our lives

in recent years, and has achieved great successes in fields

as varied as natural language processing (Brown et al.,

2020) and medical diagnostics (Shamout et al., 2019). It

is also increasingly used in the sciences, with results such

as solving protein folding (Senior et al., 2020), virtually

fixing satellite instruments (Szenicer et al., 2019), or

learning to solve the seismic wave equation (Moseley

et al., 2020). Deep learning is a natural candidate to

tackle complex unstructured data such as seismograms

(i.e. ground displacement over time), and has already

been employed on seismic data to detect earthquakes and

estimate their magnitude (Meier et al., 2019; Mousavi &

Beroza, 2020; Mousavi et al., 2020), image the subsurface

(Bianco et al., 2019), or detect volcanic seismicity (Falcin

et al., 2021), amongst many other applications. It is stea-

dily being adopted more in to conservation, for example

for counting elephant populations from high resolution

satellite imagery (Duporge et al., 2020), or detecting

whales from their vocalisations (Shiu et al., 2020), and we

believe it is vital to further incorporate this technology

into conservation efforts.

We conducted field work at the Mpala Research Centre

in Kenya, where we deployed 22 seismometers, 30 camera

traps and 8 microphones, running continuously for

3 weeks in February–March 2019. The cameras were

deployed in the vicinity of some of the seismometers, and

constitute the basis for defining labels for the seismic sig-

nals—the associated species and behaviour. The micro-

phones are not the focus of the present study, apart from
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using them to label seismic signals containing elephant

rumbles. We acquired a rich dataset of more than 8000 h

of seismic recordings and over 250 000 images, which

were later annotated with labels, so that for each image

containing an animal we extracted the corresponding seis-

mogram (see Fig. 1). In Figure 1, the seismograms exem-

plify the diversity and complexity of the signals present in

our data. We can see a clear difference between the giraffe

and the elephant seismograms, the hoofed footsteps pro-

ducing a clearer, more impulsive signal. And yet the rela-

tively small and lightfooted leopard, simply by its

fortuitous close proximity to a seismometer, could easily

be mistaken for a five ton elephant. One must therefore

bear in mind the central roles played by several variables

such as distance, soil and geology, number of animals,

behaviour.

Using this dataset, we develop deep learning classifiers

which use convolutional neural networks (CNN) to

recognise elephants and their behaviour from the three-

component (vertical, north and east axes of the seis-

mometer) spectrograms of the seismic signals, which rep-

resent the temporal evolution of the frequency content of

the signal. In particular, we train a classifier to recognise

elephants with good accuracy up to 150 m when trained

and tested on the same set of seismometers. We also

demonstrate that the network can recognise elephants on

previously unseen seismic stations, albeit with lower accu-

racy when environmental conditions are very different

from the training set, for example, on geographically dis-

tant stations with different terrains. Finally, we train a

CNN to distinguish running elephants from walking ones,

and a CNN to detect elephant rumbles which couple to

the ground. Both signal types represent important beha-

viours to monitor from the perspective of conservation

and biology.

Materials and Methods

Fieldwork

We conducted fieldwork in the Mpala research centre,

located on the Laikipia Plateau in central Kenya, between

February and March 2019. The research centre is geo-

graphically diverse, defined by a semi-arid savanna

Figure 1. Camera trap pictures providing animal species and behaviour labels, and the corresponding vertical component seismograms extracted

from nearby seismometers. While we only show the vertical component for clarity, our deep learning methods use all three components. The

amplitude scales are purposefully not equalized between the plots, so that details of each seismogram can be distinguishable. In panel (A), we

can see footsteps generated by two elephants on their way to a tree, whose shade provides relief from the heat, and its bark from itches. In (B)

in the same location, a giraffe walking. In panel (C), a leopard sneaking past a seismometer at night, which can be seen in full size for more

detail in Figure S1. All times on the seismograms are local times.
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landscape and the catchments of two rivers, supporting a

wide range of wildlife. In particular, Mpala is the tempo-

rary home of over 6000 migrating elephants, making it a

great location for our experiment.

We deployed 22 6TD G€uralp seismometers on a loan

from SEIS-UK and 30 Reconyx Hyperfire 2 camera traps

for a duration of 3 weeks. The seismometers recorded

ground motion data in three orthogonal components at a

200 Hz sampling rate and were buried around 70 cm

beneath the surface. The camera traps had an infrared

motion detector that triggered the recording of 10 pic-

tures at 1s intervals, and were mostly attached to trees

and poles at human–eye height. The theoretical range of

the sensor is up to 30 m in a 60° cone, although this is

often lower in practice due to environmental conditions.

All the instruments were deployed in an area centred

around a watering hole where many species congregated

every day. As can be seen in Figure 2, most of the instru-

ments were deployed within a few hundred metres of the

hole in order to maximize the amount of data; but others

were also deployed in more remote locations, so as to

add diversity in terms of geology and terrain. For exam-

ple, the terrain around the waterhole was wet, muddy

and with trees and bushes on the outskirts, the NWP05

station was more arid with rocky and sandy terrains,

while the remote NNL62 had a rocky geology as well as a

river gorge that was often crossed by animals.

We recorded over 250 000 pictures on the camera traps

and 8000 h of seismograms. One of the contributions of

this paper is a unique dataset of seismic recordings with

the corresponding label of the species generating the sig-

nal. To achieve this, the camera trap images were manu-

ally labelled for animal species, behaviour, number of

animals and distance from the camera trap. The labels

were then paired with seismic data from stations within a

user-defined range from the animal sighting. More details

on the processing and creation of the dataset can be

found in the supplementary material.

Modelling

We investigated multiple machine learning models on this

classification task, such as logistic regression, gradient

boosted trees and multilayer perceptrons, on either seis-

mograms or spectrograms. Our best-performing models

were different architectures of convolutional neural net-

works (CNN), a complete introduction to which can be

found in Goodfellow et al. (2016).

Figure 2. Site of fieldwork, with annotations for the positions of camera traps and seismometers. The name of seismometers is coded in

reference to the watering hole, for example WTA00 is due west of the hole at a ‘distance’ of 0 m, STA02 is due south at distance of 150 m,

NWP05 is north-west at a distance of 500 m.
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In this study, we experimented with different types

of CNNs: 1D CNNs trained from scratch on the

seismograms, 2D CNNs trained from scratch on spec-

trograms and 2D CNNs pretrained on ImageNet

(Deng et al., 2009) and then finetuned on spectro-

grams. The latter approach is very successful in envi-

ronmental sound classification (Palanisamy et al.,

2020), and is therefore a natural candidate to apply

to our dataset.

Metrics

As can be seen in Figure 3, we have a relatively imbal-

anced dataset with more sightings of elephants that non-

Figure 3. We provide a dataset of seismic chunks that contain labels of animals located up to 150 m distance from any given seismometer. For

each chunk, we provide the class (species), the station it is taken from (see Fig. 2 for a map), the distance from the station and the image that

generated the label. Panel (A) shows the data count for each station. We can see that the majority of the data comes from around the

waterhole, particularly the ET and WT stations. Panel (B) shows the distribution of data with respect to distance. Panel (C) displays the class

counts, where the y axis is on a log scale, given the overwhelming majority of elephant signals. Finally, panel (D) shows the spectrograms of

several events from different classes in the dataset.
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elephants, and class imbalances for the behavioural data-

sets as well, therefore we have to use appropriate metrics

to account for that fact, as usual metrics (e.g. accuracy)

are overly optimistic for imbalanced datasets. With TP

denoting true positives, TN true negatives, FP false posi-

tives and FN false negative, we report true positive rate

TPR = TP/(TP + FN), true negative rate TNR = TN/

(TN + FP) and balanced accuracy BA = (TPR + FPR)/2.

By averaging the true positive and negative rates, BA

offers a balanced and interpretable measure of the quality

of binary classification, even in the presence of class

imbalance.

Data augmentation

Data augmentation is a standard machine learning

method to improve the generalisation capabilities of a

network. It involves modifying datapoints from the train-

ing set in realistic ways in order to expose the network to

a more diverse dataset, which is more likely to be repre-

sentative of the data in the test set.

A crucial requirement of data augmentation methods is

that they must create realistic datapoints. While in tradi-

tional image classification of natural images such as cats

and dogs, common augmentation techniques include

image rotations and distortions (Shorten & Khoshgoftaar,

2019), it would be unsuitable for seismic data, since, for

example rotating a spectrogram plot would not result in a

realistic new datapoint.

There have been several methods proposed for earthquake

seismic data such as channel dropout, source superposition,

false positive noise (Zhu et al., 2020). We selected two meth-

ods that appear most suitable for our task, which are source

superposition and addition of noise. The former corre-

sponds to adding together different seismograms from the

same class. Given the linearity of the wave equation, adding

for instance several different signals of elephants walking

should mimic the signal generated by several elephants walk-

ing together. Such augmentation clearly does not encompass

the large variety of scenarios encountered in the wild, but

nevertheless adds some tangible extensions to the dataset

that are otherwise not recorded. Noise addition simply con-

sists of adding seismic noise to the signal, to artificially create

more diverse signal-to-noise ratios in the data. To create

realistic noise, we randomly selected 10-second seismic

chunks from time windows in the recorded data that did not

correspond to any camera-trap detected activity, and

inspected them visually to ensure they contained only noise.

Results

To provide context about the classification results, we

begin by introducing the dataset used for this study,

which is specifically curated for machine learning applica-

tions and made open source. We then proceed to detail

the results of our method on the classification of ele-

phants as well as their behaviours, in particular running

and rumbling.

SeisSavanna: an out-of-the-box dataset

One contribution of this paper is to open source the

dataset used in this work, which we name SeisSavanna.

The data are in netcdf format (Rew & Davis, 1990), and

are separated into three main files. The first file is focused

on the task of species classification. It is composed of

seismograms, the corresponding picture that generated

the sighting, the species (i.e. the label), and other infor-

mation such as seismometer name and distance of the

animals from the seismometer. We provide a ‘master’

dataset that includes animal sightings up to 150 m from

any given seismometer. We also provide scripts that easily

reduce this dataset to any desired maximal distance, such

as 40 or 60 m. Likewise, we include sightings from all

available seismometers, as well as tools to select desired

subsets of stations. In this way, we want to provide maxi-

mal flexibility to the user and enable creative applications.

The second netcdf file is specific to elephant behaviour,

and only contains elephant sightings up to 150 m away,

with the label being either ‘running’ or ‘walking’. Finally,

the last netcdf file is focused on the task of detecting ele-

phant rumbles recorded on seismometers, and as such the

class labels are ‘rumble’ or ‘not rumble’. The rumble sig-

nals do not have distance information, while the non-

rumble signals come from sightings of animals up to

150 m away. To the best of our knowledge, SeisSavanna

is the first dataset of its kind, which contains large

amounts of seismic data and images from wild animals,

made open-source and curated for ML applications.

In Figure 3, we provide some statistics about the spe-

cies classification file in SeisSavanna. In particular, we

plot the data counts with respect to station, distance and

species. We can see that most of the events come from

the stations within a 200 m radius from the waterhole,

since this location was both the most instrumented with

camera traps, but also saw the heaviest animal traffic

being one of only two locations within the area bearing

water. The two more remote stations, NWP05 and

NNL62, have between one and two thousand samples

each. There is also a class imbalance, where the majority

of datapoints come from elephants (about 60 000), with

other species having from a few dozen to a few thousand

samples. We also plot several examples of spectrograms

coming from different species in panel (D).

It is interesting to observe the differences in signal

shape, and relate them to biological features. For example,
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we can see a clear difference in the frequency of footsteps

between a relatively small animal (e.g. human, warthog

and hyena) and a giraffe or a hippo. Similarly, there are

noteworthy differences in the frequency content of the

signal. For example, some signals demonstrate more

impulsive sources with a relatively white spectrum (e.g.

giraffe or human), whereas others exhibit a softer original

impact (e.g. elephants), with a more concentrated spec-

trum. Similar patterns in the spectra of footfalls have

been observed by Wood et al. (2005). However, when

making this observation, it is important to bear in mind

the impact of signal propagation (and thus distance) on

seismic data, which progressively removes high frequen-

cies. A detailed description of our data collection process

is given in the supplementary material.

Classifying elephants versus other seismic
sources

Generalising in time

First, we focused on the task of discriminating elephants

from other species, while keeping environmental condi-

tions mostly constant, by training and testing on the

same set of seismic stations. We selected a subset of sta-

tions (ETA00, WTA00, STA02, NTA02, NWP05 and

NNL62) for which the data were sorted in time. We

then selected the first 15% of the data for the test set,

the following 15% for validation and the remaining data

for training. This split in time allowed us to have inde-

pendent training/validation/test sets. Indeed, we cannot

simply randomise our samples before splitting, as is

common in many machine learning applications, since

the samples were not independent and identically

distributed. We report the results for several maximal

distances of animals, namely 40, 60, 80, 100 and 150 m,

which allow us to probe the limits of the detection

range in SeisSavanna.

We trained different models on this task for the

60 m dataset: several baselines including a logistic

regression, gradient boosted trees and a multi-layer per-

ceptron, all on flattened seismograms/spectrograms,

where flattened means that the three seismogram com-

ponents are concatenated that is corresponding to a

1 9 6144 dimensional input rather than 3 9 2048

dimensional input. Then we trained an all-convolutional

1D-CNN inspired by Springenberg et al. (2014) on the

seismogram data, an all-convolutional 2D-CNN on the

spectrogram data, and finally, a Squeezenet (Iandola

et al., 2016) either trained from scratch or pretrained

on ImageNet and finetuned on spectrograms. The last

approach was motivated by research in environmental

sound classification, in which ImageNet-pretrained

models deliver state-of-the-art results (Palanisamy et al.,

2020). All the models use the three components of the

seismograms/spectrograms. While we have also tried

using only the vertical component, it generally led to

lower accuracy. Details of the models’ architectures and

hyperparameters used during training can be found in

the supplementary materials.

Here, we only report results from the best-performing

model on the task, but results from additional models are

provided in the supplementary material. For the elephant/

non-elephant classification with generalisation in time on

the 60-m dataset, the best-performing model was the fine-

tuned Squeezenet trained on spectrogram data, which we

therefore used on the datasets for other maximal dis-

tances. In Figure 4A, we plot the balanced accuracy

achieved by the network on the test set of datasets with

increasing maximal distances. We can see that the model

achieves close to 90% balanced accuracy up to 80 m dis-

tance, which then decreases to 82% at 100 m, and

decreases further to 73% for 150 m. The drop in accuracy

is further confirmed by inspecting classification accuracy

as a function of distance, as can be seen in Figure 5. The

plot suggests that beyond around 100 m, the accuracy

drops off, likely because increasingly more seismograms

have lower signal-to-noise ratios. This drop in accuracy is

due to the labels becoming corrupted, that is a signal

labelled ’elephant’ while it is only noise on the seismome-

ter, as can be seen in Figure 6. The extent of signal prop-

agation depends on environmental conditions such as

force of the impact, number of animals, local geology. As

such, label corruption can also happen at closer ranges,

but on average increases with distance from the seis-

mometer.

We believe that these results are very promising, and

they showcase the great potential of using seismic data to

accurately detect elephants up to relatively large distances

compared to other methods such as camera traps: around

100 m with our current dataset.

Generalising to new stations

In this section, we still classify signals into elephant/non-

elephant, but in a more ambitious training scenario.

Indeed, we trained on a subset of stations and tested on a

different subset. Achieving across-station generalisation

would in theory allow us to only conduct data-gathering

for training once, and then add new stations to our exist-

ing network, or even perform the analysis with this same

pretrained network in new field deployments and loca-

tions. Each split used a new seismometer as a test set, in

order to investigate generalisation ability to different envi-

ronments. It is noteworthy to appreciate that the terrain

across our 22 stations varied quite significantly, including
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topographic and vegetation changes, soil conditions from

wet mud to unconsolidated sand and rocky terrain. All

the splits were for a maximal distance of 60 m, because

we wanted to decouple the effect of the environment

from effects such as label degradation with distance men-

tioned in the previous section.

The best-performing model for the across-station splits

was the finetuned Squeezenet. In Figure 4B, we plot the

balanced accuracy, true positive rate (elephant accuracy)

and true negative rate (non-elephant accuracy), for the

test set of each station split. We still achieved good bal-

anced accuracy, albeit lower than when generalising in

time. Remarkably, the network achieved lower balanced

accuracy when the test set was NWP05 or NNL62, com-

pared to the other splits. This is noteworthy because these

two stations were the furthest away from the waterhole

where most of the data came from, and had therefore the

most different geological and environmental conditions,

for instance hard rocky ground at NNL62, as opposed to

wet muddy conditions at the waterhole. This suggests

that, as expected, we need to acquire data from a varied

collection of environmental conditions to improve our

generalisation capabilities.

Classifying behaviour

Locomotion versus vocalisation

Besides recognising and tracking elephants, a central

objective of a monitoring system is to be able to alert

authorities to potentially perilous situations for the ani-

mals. A behaviour of interest is elephant vocalisation, in

particular in the form of rumbling, because they couple

to the ground and can be observed in our seismic signals.

Elephants use these vocalisations as communication, for

example for greetings, warnings about imminent threats,

or communicating movement (Poole, 2011). While there

is research looking at automatically detecting and classify-

ing elephant vocalisations (Leonid & Jayaparvathy, 2020),

it is performed with small sample sizes, and crucially on

acoustic data from microphones. To the best of our

knowledge, this work is the first time this is done using

seismic signals with large amounts of data, and using

deep learning.

Because rumbles cannot be identified from images, we

manually went through a portion of the data to look for

vocalisations. The rumbles have a characteristic shape that

Figure 4. (A) True positive rate (TPR, elephant accuracy), true negative rate (TNR, non-elephant accuracy) and balanced accuracy (BA, average of

elephant and non-elephant accuracies) achieved by the finetuned Squeezenet on the test set for datasets with increasing maximal distance of

animals. (B) True positive rate (TPR, elephant accuracy), true negative rate (TNR, non-elephant accuracy) and balanced accuracy (BA, average of

elephant and non-elephant accuracies) achieved by the finetuned Squeezenet on the test set for different test stations, which probed the ability

of the network to generalise to new environmental conditions. We annotate the histograms with the value of the metric for easier interpretation.

8 ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London

Seismic Savanna: Machine Learning with Elephants A. Szenicer et al.



is easily recognisable, and in stark contrast to an impul-

sive locomotion signal, as we can see in Figure 7. Note

that seismic rumble signals do not contain as many har-

monics as seen in acoustic signals, presumably due to

their coupling characteristics to the ground Reinwald

et al. (2021); this will need to be investigated in a future

study. However, it is important to note that the lowest

seismic frequency of the rumble is the most interesting

and useful one, as that signal will propagate furthest. We

therefore manually labelled 1500 rumbles on two seismic

stations (ETA00 and EEL11), and combined these into a

dataset with locomotion signals from all other species

together (elephants, giraffes, etc.). The rumbles detected

in the seismic data were also validated by their presence

in the microphone data. The spectrograms were processed

differently than in the previous section (see supplemen-

tary material for details), and following Reinwald et al.

(2021), we applied the structure tensor (Harris &

Figure 5. (A) True positive rate (elephant accuracy) and (B) true negative rate (non-elephant accuracy) as a function of distance on the test set of

the 150-m dataset, for a finetuned squeezenet. We annotate the histogram with numbers of samples to clarify the absence of data for certain

distances.

Figure 6. Spectrograms of two elephant samples, recorded on the station NWP05 at different distances. We can see that for the elephant

walking 131 m away, the camera trap provides an elephant label, but the seismic signal becomes so faint after propagation that the datapoint

looks like noise.
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Stephens, 1988) of the spectrogram as a filter. This

approach enhances the rumbles which contain sharp con-

tours along the frequency axis, and diminishes the broad-

band locomotion signals, as can be seen in

Supplementary Figures S2 and S3.

The finetuned squeezenet achieved the best perfor-

mance on the rumble classification task, with 96.1% bal-

anced accuracy, of which the true positive rate (rumble

accuracy) was 97.3%, and true negative (non-rumble

accuracy) was 94.8%. This provides us with a highly accu-

rate automated seismic rumble detector, which is yet

another reason to push further with using seismic data

for elephant conservation.

Walking versus running

Another common behaviour exhibited in times of danger

is running (Sukumar, 2003), either as an attack or

defence mechanism from poaching for instance. There-

fore, once we identified an elephant signal, we addition-

ally attempted to train a classifier to determine whether

the elephants were running or not.

This task is particularly difficult for elephants, because

their gait transition is not as pronounced and clear as

other animals such as in humans or zebras (Ren &

Hutchinson, 2008). Therefore, the main differences we

can expect in the signal that comes either from the fre-

quency of the footfalls (as can be seen in Figure 8) or

their intensity. However, these two effects can also be

confounded by the number of animals or the distance of

the animals, for example several elephants walking close

to a seismometer could look the same as elephants run-

ning further away. Nevertheless, we included all sightings

with up to 100 animals in the image, in order to be as

realistic as possible in the type of signals we cover, and

also increase our sample size.

Figure 7. Seismic spectrograms of an elephant rumble (left) versus elephant locomotion (right). The rumble has a very distinctive spectral

signature, although it is different from the shape of the spectrogram one obtains when recording rumbles on microphones, because the ground

coupling has a strong effect on the characteristics of the signal. We process the spectrograms to enhance the rumble signal and attenuate the

locomotion signals, as can be seen in Figures S2 and S3.

Figure 8. Spectrograms of an elephant running (left) versus elephant walking (right). In this instance we can see a clear difference in footstep

frequency between the two signals.
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The behaviour dataset was generated similarly to the

species dataset, except that we only selected sightings of

elephants, and used behavioural notes for class attribution

to ‘running’ or ‘walking’. The 60-m dataset contained 309

samples of the running class, and 18 726 of non-running.

We took particular care to only keep running data for

which the signal is very clear, since having erroneous

labels with such low sample size drastically degraded per-

formance. To this end, we visually inspected the running

data and refined the labels by discarding samples for

which it is clear that the signal has not been recorded at

the seismometer. While we only refined labels for the

samples from the ‘running’ class (the large amount of

samples in the ‘walking’ class made visual inspection too

time consuming), and it is inevitable that the ‘walking’

class will contain some unnoticed instances of running,

the majority of the labels should be correct and allowed

the network to successfully discriminate between the

signals.

The best-performing model on this task was the 2D-

CNN trained from scratch, which on the test set achieved

a balanced accuracy of 93.9%, with a perfect true positive

rate (running accuracy) of 100%, and a true negative rate

(walking accuracy) of 87.8%. Interestingly, this was the

only task for which the 2D-CNN trained from scratch

outperformed the pretrained Squeezenet, which achieved

75% balanced accuracy.

Once again, these results show great promise for the

use of seismic data to not only detect elephants, but also

understand whether they display behaviour that poten-

tially indicates a perilous situation.

Discussion

In this work, we introduce a novel approach to monitor-

ing wildlife, including African elephants, which utilises

deep learning to classify seismic signals recorded on seis-

mometers.

Crucially, we open-source SeisSavanna, the seismic

wildlife dataset used in this work, with the hope that it

will foster further collaboration between the fields of

machine learning, geophysics, and biology. The species

file in SeisSavanna contains 70 k sightings from 11 differ-

ent species, for distances up to 150 m. We also provide

two elephant behaviour files, one containing sightings of

elephants running and walking, with respectively 1.5 k

and 61 k samples up to 150 m; and a rumbles file con-

taining 1.5 k rumbles and 25 k locomotion signals. While

this dataset is intended to benefit the investigation of new

methods to use seismic data for conservation, it is worth

noting that it is also very useful for computer vision

tasks, since for each seismogram in the species and

running files, we provide the corresponding picture that

generated the sighting.

By applying deep learning methods to these datasets,

we were able to distinguish elephants from other species

with 80%–90% balanced accuracy for distances of up to

100 m, recognise elephant vocalisations in the form of

rumbles with 96% balanced accuracy, and distinguish

walking from running in elephants with 94% balanced

accuracy for distances up to 60 m. Our best-performing

approaches were CNNs applied on spectrograms, in par-

ticular finetuning a Squeezenet pretrained on ImageNet,

or training an all convolutional 2D-CNN from scratch.

The aforementioned results are very encouraging, as

deep learning methods performed very well in the tasks

we set them, with good accuracy despite the challenging

natural context in which data were collected. In particu-

lar, the variable field terrain (e.g. wet and muddy mate-

rial, rocky ridges, hard stone and sand, gorges) and the

noisy conditions of the sites (e.g. many different animal

species, large variation in number of animals and their

concurrent behaviour, wind, cars) are usually seen as

compromising factors for generalisation of such an

approach, but our results indicate that these can be han-

dled well. Our results also highlight some of the limita-

tions and key variables of the dataset which we discuss in

more detail below: (1) uncertainty in the labels due to

partial camera trap coverage; (2) decrease of signal-to-

noise ratios (SNRs) with distance, which causes corrup-

tion in the labels; and (3) effect of local environmental

conditions and their impact on the ability of the network

to generalise to new locations.

We now address each of these points in more detail,

before outlining how these limitations can be mitigated.

To begin with, one crucial consideration about the

data, which is relevant to all the tasks we are tackling, is

the relatively high level of uncertainty present in the sig-

nal. Indeed, the seismometers record data with a 360° azi-
muthal range, whereas the animal species labels are

provided by camera traps, which have a range of about

60° and about 30 m. This means that there is a sizeable

blind spot in our labelling procedure, and to give an

extreme example, there could be an elephant walking a

few metres from a seismometer, while the label provided

by the camera is that of a zebra 50 m away. Naturally,

the fieldwork was designed to try and minimize these sce-

narios, notably by placing camera traps covering all direc-

tions in areas most propitious to animal traffic, as

recommended by our local field guide. Therefore, the cor-

ruption of labels should not be too prevalent, but must

nevertheless be kept in mind. Considering this uncer-

tainty, the accuracies achieved in this study are all the

more encouraging.
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Another important limitation of the data to bear in

mind, as highlighted by the decrease in accuracy in classi-

fying elephants versus non-elephants for the 150 m data-

set, is the increasing corruption of the labels in the

dataset and decreasing SNRs. Indeed, as we include sight-

ings of animals at increasingly large distances, seismic

signals are less and less likely to be recorded by a seis-

mometer. Therefore, if we have a label saying ‘elephant at

500 m’, the extracted chunk will most likely contain only

noise. This causes problems both during training (show-

ing very similar noise signals both for the ‘elephant’ and

‘non-elephant’ classes) and during testing (labels are cor-

rupted and therefore metrics are biased). Notably, this

does not preclude signals to propagate over such distances

or further in principle; only the complexity and noise

environment of our specific dataset prevents us from

training the algorithms with such distant propagation.

Finally, attempting to classify elephants from non-

elephants and generalise to new stations highlights the

importance of the local environment of the station, and

the need for more diverse datasets to improve generalisa-

tion capabilities to new environments. Indeed, it is note-

worthy that the balanced accuracy is higher when the test

set station is similar to the stations in the training set,

and lower when the test station is remote or with a differ-

ent environment, which is physically coherent, because

factors such as terrain and geology have important

impacts on signal propagation (Mortimer et al., 2018). It

is also in line with general results in deep learning,

whereby training and test data have to be generated from

the same distribution for the network to produce good

results, and is the reason why the machine learning com-

munity strives to produce datasets containing enormous

amounts of labelled data (e.g. ImageNet (Deng et al.,

2009) for image classification with 14 197 122 pictures in

1000 classes, or MS COCO (Lin et al., 2014) for object

detection with 328 k pictures annotated with bounding

boxes, segmentation masks, natural language captions).

How might we address or mitigate the limitations out-

lined above? An obvious solution is to acquire more data,

from more diverse environments. This will allow us to

improve accuracy, generalise better to new stations, but

also test refined classification tasks, such as multispecies

classification. A straightforward way to get more labelled

data is to label the remaining camera trap pictures.

Another possibility worth exploring is to deploy dense

arrays of devices such as geophones or accelerometers.

These devices are inexpensive and easy to deploy, and can

therefore be used to sample many different locations,

which is a boon both for the monitoring range since we

can cover more area, but also for the performance of the

method, as we will sample more varied environmental

conditions and generalise better. Dense arrays of

instruments can also be beneficially exploited, for example

to enhance signal to noise ratios with stacking, but also

with more advanced array methods (Rost & Thomas,

2002). However, more data are not the only solution to

overcome the outlined limitations of our approach.

A very successful way to improve generalisation ability

in machine learning is the use of data augmentation

methods, whereby one creates fake training examples by

modifying existing data in realistic ways (e.g. rotating or

distorting pictures in image classification (Shorten &

Khoshgoftaar, 2019)). We attempted to use data augmen-

tation methods designed for seismic signals (Zhu et al.,

2020), but have not seen a consistent improvement in

accuracy. This likely means that for our task, these meth-

ods do not produce realistic or useful datapoints, and in

future work we will address the design of specialised data

augmentation techniques that will help us generalise to

new environments and therefore across stations. For

instance, we are planning to investigate synthetic signal

based augmentation, by exploiting generative adversarial

networks (GAN), which can be used to produce realistic

new training examples (Frid-Adar et al., 2018; Li et al.,

2018). In particular, we would like to be able to create

data that appears to come from new environments, which

is key to across-station generalisation.

To tackle the uncertainty in the labels, future fieldwork

should surround each seismometer with several camera

traps in order to provide full azimuthal coverage and

remove label corruption altogether. To address the issue

of label corruption due to increasing distances, one can

improve the existing dataset by sifting through all the dat-

apoints and manually refining the labels by removing

samples that contain no signal. It is a slow and time con-

suming process, which unfortunately is hard to automate

by simply removing low SNR samples, because doing so

also removes many valuable low amplitude signals that

have comparable SNRs.

Overall, our results show that information-bearing, dis-

criminatory signals propagate over large distances com-

pared to other methods (over 100 m), and that seismic

data are a very promising avenue for monitoring wildlife

and their behaviour with automated techniques. Together

with the release of seismic wildlife datasets, this opens up

the door for many applications. First and foremost, this

approach paves the way for the development of elephant

seismic monitoring systems for conservation, with the

potential for near real-time capability. We have shown

that seismic data offers great benefits for detecting ele-

phants, in terms of sensitive detection up to tens of

metres range and accurate classification of both the spe-

cies and behaviours. The detection of elephant running is

of particular interest since this potentially indicates a situ-

ation of welfare concern (Sukumar, 2003). In the future,
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in combination with the deployment of dense arrays of

geophones or accelerometers in optimised array geome-

tries to improve signal-to-noise ratios and sample more

varied environments, we envisage autonomous sensor sys-

tems that can record, collate and analyse seismic data

streams in near real-time. Moreover, a variety of different

sensors can be investigated, including ones that are

cheaper and more practical to deploy. This has broad

applications for elephant monitoring, whether for the

study of their behaviour and communication in the wild,

or as information for rangers to respond to behaviours of

concern, such as elephants running. With further

research, this approach could have applications beyond

elephants to detect, classify and monitor a range of ani-

mals within their remote habitats.
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Figure S1. Full size version of the leopard image seen in

Figure 1.

Figure S2. Spectrogram of a rumble before and after

applying the structure tensor. We can see that the loco-

motion signal is attenuated when applying the structure

tensor, thus making the rumble signal more prominent.

Figure S3. Spectrogram of an elephant walking before

and after applying the structure tensor. We can see that

the locomotion signal is attenuated when applying the

structure tensor.

Data S1. The SeisSavanna dataset.
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